
MIL-STD-1777
12 AUGUST 1983

MILITARY STANDARD

INTERNET PROTOCOL

NO DELIVERABLE DATA REQUIRED BY THIS DOCUMENT

2

IPSC/SLHC/TCTS

ii

DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301

Internet Protocol

MIL-STD-1777

 1. This Military Standard is approved for use by all Departments and
Agencies of the Department of Defense.

 2. Beneficial comments (recommendations, additions, deletions) and any
pertinent data which may be of use in improving this document should be
addressed to: Defense Communications Agency, ATTN: J110, 1860 Wiehle
Avenue, Reston, Virginia 22090, by using the self-addressed Standardization
Document Improvement Proposal (DD Form 1426) appearing at the end of this
document, or by letter.

FOREWORD

This document specifies the Internet Protocol (IP) which supports the inter-
connection of communication subnetworks. The document includes an introduction
to IP with a model of operation, a definition of services provided to
users, and a description of the architectural and environmental requirements.
The protocol services interfaces and mechanisms are specified using an abstract
state machine model.

iv

CONTENTS

Page

Paragraph 1. SCOPE - 1
1.1 Purpose - - - - - - - - - - - - - - - - - - - 1
1.2 Organization- - - - - - - - - - - - - - - - - 1
1.3 Application - - - - - - - - - - - - - - - - - 1

2. REFERENCED DOCUMENTS- - - - - - - - - - - - - - 2
2.1 Issues of documents - - - - - - - - - - - - - 2
2.2 Other publications- - - - - - - - - - - - - - 2

3. DEFINITIONS - - - - - - - - - - - - - - - - - - 3
3.1 Definition of terms - - - - - - - - - - - - - 3

4. GENERAL REQUIREMENTS- - - - - - - - - - - - - - 7
4.1 Design- 7
4.2 Internet protocol definition- - - - - - - - - 7
4.2.1 Protocol implementation - - - - - - - - - - - 7
4.2.2 Upper layer protocol- - - - - - - - - - - - - 7
4.2.3 Datagram processing error - - - - - - - - - - 8
4.2.4 Fragmentation and reassembly mechanisms - - - 8
4.2.5 IP evolution- - - - - - - - - - - - - - - - - 9
4.3 Scenario- - - - - - - - - - - - - - - - - - - 9
4.3.1 Basic model of operation- - - - - - - - - - - 9

5. SERVICES PROVIDED TO UPPER LAYER- - - - - - - - 11
5.1 Description - - - - - - - - - - - - - - - - - 11

 5.2 Datagram service- - - - - - - - - - - - - - -
11
5.2.1 Delivery service- - - - - - - - - - - - - - - 11
5.3 Generalized network services- - - - - - - - - 11
5.3.1 Network parameters- - - - - - - - - - - - - - 11
5.4 Error reporting service - - - - - - - - - - - 12

6. UPPER LAYER SERVICE/INTERFACE SPECIFICATION - - 13
6.1 Description - - - - - - - - - - - - - - - - - 13
6.2 Interaction primitives- - - - - - - - - - - - 13
6.2.1 Service request primitives- - - - - - - - - - 13
6.2.1.1 SEND- 13
6.2.2 Service response primitives - - - - - - - - - 14
6.2.2.1 DELIVER - - - - - - - - - - - - - - - - - - - 14
6.3 Extended State machine specification of

 services provided to upper layer - - - - - - 15
6.3.1 Machine instantiation identifier- - - - - - - 15
6.3.2 State diagram - - - - - - - - - - - - - - - - 15
6.3.3 State vector- - - - - - - - - - - - - - - - - 15
6.3.4 Data structures - - - - - - - - - - - - - - - 15
6.3.4.1 From ULP- - - - - - - - - - - - - - - - - - - 15
6.3.4.2 To ULP- 16
6.3.5 Event list- - - - - - - - - - - - - - - - - - 16
6.3.6 Events and actions- - - - - - - - - - - - - - 17

CONTENTS

Page

Paragraph 6.3.6.1 EVENT = SEND (from ULP) at time t - - - - - - 17
6.3.6.2 EVENT = NULL- - - - - - - - - - - - - - - - - 18

7. SERVICES REQUIRED FROM LOWER LAYER- - - - - - - 20
7.1 Description - - - - - - - - - - - - - - - - - 20
7.2 Data transfer - - - - - - - - - - - - - - - - 20
7.3 reporting - - - - - - - - - - - - - - - - - - 20

8. LOWER LATER SERVICE/INTERFACE SPECIFICATION - - 21
8.1 Description - - - - - - - - - - - - - - - - - 21
8.2 Interaction primitives- - - - - - - - - - - - 21
8.2.1 Service request primitives- - - - - - - - - - 21
8.2.1.1 SEND- 21
8.2.2 Service response primitives - - - - - - - - - 22
8.2.2.1 SNP DELIVER - - - - - - - - - - - - - - - - - 22
8.3 Extended state machine specification of

 services required from lower layer - - - - - 22
8.3.1 Machine instantiation identifier- - - - - - - 22
8.3.2 State diagram - - - - - - - - - - - - - - - - 22
8.3.3 State vector- - - - - - - - - - - - - - - - - 22
8.3.4 Data structures - - - - - - - - - - - - - - - 22
8.3.4.1 From SNP- - - - - - - - - - - - - - - - - - - 22
8.3.4.2 To SNP- 23
8.3.4.3 Dtgm- 23
8.3.5 Event list- - - - - - - - - - - - - - - - - - 24
8.3.6 Events and actions- - - - - - - - - - - - - - 24
8.3.6.1 EVENT = SNP SEND (to SNP) - - - - - - - - - - 24
8.3.6.2 EVENT = NULL- - - - - - - - - - - - - - - - - 24

9. IP ENTITY SPECIFICATION - - - - - - - - - - - - 25
9.1 Description - - - - - - - - - - - - - - - - - 25
9.2 Overview of IP mechanisms - - - - - - - - - - 25
9.2.1 Routing mechanism - - - - - - - - - - - - - - 25
9.2.1.1 Internet addresses- - - - - - - - - - - - - - 25
9.2.1.1.1 Internet addressing classes - - - - - - - - - 26
9.2.1.1.2 Datascan routing- - - - - - - - - - - - - - - 26
9.2.1.2 Routing options - - - - - - - - - - - - - - - 27
9.2.1.2.1 Routing types - - - - - - - - - - - - - - - - 27
9.2.2 Fragmentation and reassembly- - - - - - - - - 27
9.2.2.1 Fragment routing- - - - - - - - - - - - - - - 28
9.2.2.2 Fragment reassembly - - - - - - - - - - - - - 28
9.2.2.3 Fragment loss - - - - - - - - - - - - - - - - 28
9.2.3 Checksum - - - - - - - - - - - - - - - - - - 29
9.2.4 Time-to-live- - - - - - - - - - - - - - - - - 29
9.2.5 Type of service - - - - - - - - - - - - - - - 29
9.2.6 Data options- - - - - - - - - - - - - - - - - 30
9.2.6.1 Timing information- - - - - - - - - - - - - - 30

vi

CONTENTS - Continued

Page

Paragraph 9.2.7 Error report datagrams- - - - - - - - - - - - 31
9.3 Message format for peer exchanges - - - - - - 31
9.3.1 Version - - - - - - - - - - - - - - - - - - - 31
9.3.2 Internet header length- - - - - - - - - - - - 31
9.3.3 Type of service - - - - - - - - - - - - - - - 32
9.3.4 Total length- - - - - - - - - - - - - - - - - 32
9.3.5 Identification- - - - - - - - - - - - - - - - 32
9.3.6 Flags - 33
9.3.7 Fragment offset - - - - - - - - - - - - - - - 33
9.3.8 Time-to-live- - - - - - - - - - - - - - - - - 33
9.3.9 Protocol- - - - - - - - - - - - - - - - - - - 33
9.3.10 Header checksum - - - - - - - - - - - - - - - 33
9.3.11 Source address- - - - - - - - - - - - - - - - 34
9.3.12 Destination address - - - - - - - - - - - - - 34
9.3.13 Options - - - - - - - - - - - - - - - - - - - 34
9.3.13.1 Internet options defined- - - - - - - - - - - 35
9.3.14 Padding - - - - - - - - - - - - - - - - - - - 35
9.3.15 Specific option definitions - - - - - - - - - 35
9.3.15.1 End of option list- - - - - - - - - - - - - - 35
9.3.15.2 No operation- - - - - - - - - - - - - - - - - 36
9.3.15.3 Security- - - - - - - - - - - - - - - - - - - 36
9.3.15.3.1 Security (S field)- - - - - - - - - - - - - - 36
9.3.15.3.2 Compartments (C field)- - - - - - - - - - - - 37
9.3.15.3.3 Handling restrictions (H field) - - - - - - - 37
9.3.15.3.4 Transmission control code (TCC field) - - - - 37
9.3.15.4 Loose source and record route - - - - - - - - 37
9.3.15.5 Strict source and record route- - - - - - - - 38
9.3.15.6 Record route- - - - - - - - - - - - - - - - - 38
9.3.15.7 Stream identifier - - - - - - - - - - - - - - 38
9.3.15.8 Internet timestamp- - - - - - - - - - - - - - 39
9.4 Extended state machine specification of IP

 entity - - - - - - - - - - - - - - - - - - - 39
9.4.1 Machine instantiation identifier- - - - - - - 39
9.4.2 State diagram - - - - - - - - - - - - - - - - 39
9.4.3 State vector- - - - - - - - - - - - - - - - - 40
9.4.4 Data structures - - - - - - - - - - - - - - - 40
9.4.4.1 State vector- - - - - - - - - - - - - - - - - 41
9.4.4.2 From ULP- - - - - - - - - - - - - - - - - - - 41
9.4.4.3 To ULP- 41
9.4.4.4 From SNP- - - - - - - - - - - - - - - - - - - 42
9.4.4.5 To SNP- 42
9.4.4.6 Dtgm- 42
9.4.5 Event list- - - - - - - - - - - - - - - - - - 43
9.4.6 Events and actions- - - - - - - - - - - - - - 43
9.4.6.1 Events and actions decision tables- - - - - - 44
9.4.6.1.1 State = inactive, event is SEND from ULP- - - 44
9.4.6.1.2 State = inactive, event is SNP DELIVER from

 SNP- 44

CONTENTS - Continued

Paragraph 9.4.6.1.3 State = reassembling, event is SNP DELIVER
 from SNP - - - - - - - - - - - - - - - - - - 45

9.4.6.1.4 State = inactive, event is TIMEOUT- - - - - - 45
9.4.6.2 Decision table functions- - - - - - - - - - - 46
9.4.6.2.1 A frag- 46
9.4.6.2.2 Can frag- - - - - - - - - - - - - - - - - - - 46
9.4.6.2.3 Checksum valid- - - - - - - - - - - - - - - - 47
9.4.6.2.4 Icmp_checksum - - - - - - - - - - - - - - - - 47
9.4.6.2.5 Need to frag- - - - - - - - - - - - - - - - - 48
9.4.6.2.6 Reass done- - - - - - - - - - - - - - - - - - 48
9.4.6.2.7 SNP_params valid- - - - - - - - - - - - - - - 49
9.4.6.2.8 TTL valid - - - - - - - - - - - - - - - - - - 50
9.4.6.2.9 ULP_params valid- - - - - - - - - - - - - - - 51
9.4.6.2.10 Where dest- - - - - - - - - - - - - - - - - - 51
9.4.6.2.11 Where to- - - - - - - - - - - - - - - - - - - 52
9.4.6.3 Decision table action procedures- - - - - - - 52
9.4.6.3.1 Analyze - - - - - - - - - - - - - - - - - - - 53
9.4.6.3.2 Build&send- - - - - - - - - - - - - - - - - - 55
9.4.6.3.3 Compute checksum- - - - - - - - - - - - - - - 56
9.4.6.3.4 Compute_icmp_checksum - - - - - - - - - - - - 56
9.4.6.3.5 Error to source - - - - - - - - - - - - - - - 57
9.4.6.3.6 Error to ULP- - - - - - - - - - - - - - - - - 58
9.4.6.3.7 Fragment&send - - - - - - - - - - - - - - - - 59
9.4.6.3.8 Local delivery- - - - - - - - - - - - - - - - 62
9.4.6.3.9 Reassembly- - - - - - - - - - - - - - - - - - 63
9.4.6.3.10 Reassembled delivery- - - - - - - - - - - - - 65
9.4.6.3.11 Reaseembly timeout- - - - - - - - - - - - - - 66
9.4.6.3.12 Remote delivery - - - - - - - - - - - - - - - 67
9.4.6.3.13 Route - 68

10. EXECUTION ENVIRONMENT REQUIREMENTS- - - - - - - 71
10.1 Description - - - - - - - - - - - - - - - - - 71
10.2 Interprocess communication- - - - - - - - - - 71
10.3 Timing- 71

viii

CONTENTS - Continued

Page

FIGURES

Figure 1. Example host protocol hierarchy - - - - - - - - 7
2. Example gateway protocol hierarchy- - - - - - - 8
3. Base model of operations- - - - - - - - - - - - 9
4. Subnetwork packet - - - - - - - - - - - - - - - 10
5. Internet addresses- - - - - - - - - - - - - - - 26
6. IP header format- - - - - - - - - - - - - - - - 31
7. Table of service field- - - - - - - - - - - - - 32
8. Control flags field - - - - - - - - - - - - - - 33
9. Fields of the option-type octet - - - - - - - - 35
10. Security option format- - - - - - - - - - - - - 36
11. A simplified IP state machine - - - - - - - - - 40
12. Transmission order of octets- - - - - - - - - - 72
13. Significance of bits- - - - - - - - - - - - - - 72

TABLES

Table I. Inactive state decision table when event in SEND
 from ULP - - - - - - - - - - - - - - - - - - - 44

II. Inactive state decision table when event is
 SNP DELIVER from SNP - - - - - - - - - - - - - 44

III. Reassembling state decision table when event Is
 SNP DELIVER from SNP - - - - - - - - - - - - - 45

APPENDICES

Appendix A. Data transmission order - - - - - - - - - - - - 72

1. SCOPE

 1.1 Purpose. This standard establishes criteria for the Internet Protocol
(IP) which supports the interconnection of communication subnetworks.

 1.2 Organization. This standard introduces the Internet Protocol’s role
and purpose, defines the services provided to users, and specifies the
mechanisms needed to support those services. This standard also defines the
services required of the lower protocol layer, describes the upper and lower
interfaces, and outlines the execution environment services needed for
implementation.

 1.3 Application. The Internet Protocol (IP) and the Transmission Control
Protocol (TCP) are mandatory for use in all DoD packet switching networks
which connect or have the potential for utilizing connectivity across network
or subnetwork boundaries. Network elements (hosts, front-ends, bus interface
units, gateways, etc.) within such networks which are to be used for inter-
netting shall implement TCP/IP. The term network as used herein includes
Local Area Networks (LANs)) but not integrated weapons systems. Use of TCP/IP
within LANs is strongly encouraged particularly where a need is perceived for
equipment interchangeability or network survivability. Use of TCP/IP in
weapons systems is also encouraged where such usage does not diminish network
performance.

2

2. REFERENCED DOCUMENTS

 2.1 Issues of documents. The following documents of the issue in effect
on date of invitation for bids or request for proposal, form a part of this
standard to the extent specified herein. (The provisions of this paragraph
are under consideration.)

 2.2 Other publications. The following documents form a part of this
standard to the extent specified herein. Unless otherwise indicated, the
issue in effect on date of invitation for bids or request for proposals shall
apply. (The provisions of this paragraph are under consideration.)

3. DEFINITIONS

 3.1 Definition of terms. The definition of terms used in this standard
shall comply with FED-STD-1037. Terms and definitions unique to MIL-STD-1777
are contained herein.

a. Datagram. A self-contained package of data carrying enough
information to be routed from source to destination without
reliance on earlier exchanges between source or destination and the
transporting subnetwork.

b. Datagram fragment. The result of fragmenting a datagram,
also simply referred to as a fragment. A datagram fragment carries
a portion of data from the larger original, and a copy of the
origi-nal datagram header. The header fragmentation fields are
adjusted to indicate the fragments relative position within the
original datagram.

c. Datagram service. A datagram, defined above, delivered in
such a way that the receiver can determine the boundaries of the
datagram as it was entered by the source. A datagram is delivered
with non-zero probability to the desired destination. The
sequence in which datagrams are entered into the subnetwork by
a source is not necessarily preserved upon delivery at the
destination.

d. Destination. An IP header field containing an internet
address indicating where a datagram is to be sent.

e. DF. Don't Fragment flag: An IP header field that when set
“true” prohibits an IP module from fragmenting a datagram to
accomplish delivery.

f. EFTP. Electronic File Transfer Protocol. Electronic mail.

g. Fragmentation. The process of breaking the data within a
data- gram into smaller pieces and attaching new internet headers
to form smaller datagrams.

h. Fragment Offset. A field in the IP header marking the
relative position of a datagram fragment within the larger original
datagram.

i. FTP. File Transfer Protocol.

j. Gateway. A device, or pair of devices, which interconnect
two or more subnetworks enabling the passage of data from one
subnetwork to another. In this architecture, a gateway usually
contains an IP module, a Gateway-to-Gateway Protocol (GGP)
module, and a subnetwork protocol module (SNP) for each connected
subnetwork.

4

k. Header. Collection of control Information transmitted with
data between poor entities.

l. Host. A computer which is a source or destination of
messages from the point of view of the communication subnetwork.

a. ICMP. Internet Control Message Protocol, the collection of
error conditions and error message formats exchanged by IP modules
in both hosts and gateways.

n. Identification. An IP header field used in reassembling
fragments of a datagram.

o. IHL. Internet Header Length: an IP header field indicating
the number of 32-bit words making up the Internet header.

p. Internet address. A four octet (32 bit) source or destination
address composed of a Network field and a REST field. The latter
usually contains a local subnetwork address.

q. Internet datagram. The package exchanged between a pair of
IP modules. It is made up of an IP header and a data portion.

r. Local address. The address of a host within a subnetwork.
The actual mapping of an Internet address onto local subnetwork
addresses is quite general. allowing for many to one mappings.

a. Local subnetwork. The subnetwork directly attached to host
or gateway.

t. MF. More Fragments flag: an IP header field indicating
whether a datagram fragment contains the end of a datagram.

u. MTU. Maximum Transmission Unit: a subnetwork dependent value
which indicates the largest datagram that a subnetwork can handle.

v. Octet. An eight-bit byte.

v. Options. The optional set of fields at the end of the IP
header used to carry control or routing data. An Options field may
contain none, one, or several options, and each option may be one
to several octets in length. The options allow ULPs to customize
IP’s services. The options are also useful in testing situations
to carry diagnostic data such as timestamps.

x. Packet network. A network based on packet-switching
technology. Messages are split into small units (packets) to be
routed independently on a store and forward basis. This approach
pipelines packet transmission to effectively use circuit bandwidth.

y. Padding. An IP header field, one octet in length. Inserted
after the last option field to ensure that the data portion of a
datagram begins on a 32-bit word boundary. The Padding field value
is zero.

z. Protocol. An internet header field used to identify the
upper layer-protocol that is the source and destination of the data
within an IP datagram.

aa. Reassembly. The process of piecing together datagram
fragments to reproduce the original large datagram. Reassembly
is based on fragmentation data carried in their IP headers.

bb. Reliability. One of the service quality parameters provided
by the type of service mechanism. The reliability parameter can
be set to one of four levels: lowest, lower, higher, or highest.
It appears as a two-bit field within the Type of Service field in
the IP header.

cc. Rest. The three-octet field of the internet address usually
containing a local address.

dd. Segment. The unit of data exchanged by TCP modules. This
term may also be used to describe the unit of exchange between any
transport protocol modules.

ee. Source. An IP header field containing the Internet address
of the datagram's point of origin.

ff. Stream delivery service. The special handling required for a
class of volatile periodic traffic typified by voice. The class
requires the maximum acceptable delay to be only slightly larger
than the minimum propagation time, or requires the allowable
variance in packet interarrival time to be small.

gg. SNP. Subnetwork Protocol: the protocol residing in the
subnetwork layer below IP which provides data transfer through the
local subnet. In some systems, an adapter module must be inserted
between IP and the subnetwork protocol to reconcile their
dissimilar interfaces.

hh. TCP. Transmission Control Protocol: a transport protocol
providing connection-oriented, end-to-end reliable data
transmission in packet-switched computer subnetworks and
internetworks.

ii. TCP segment. The unit of data exchanged between TCP modules
(including the TCP header).

jj. Total Length. An IP header field contain number of octets
 in an internet datagram, including both the IP header and the
data portion.

6

kk. Type of Service. An IP header field containing the
transmission quality parameters: precedence level, reliability
level, speed level, resource trade-off (precedence vs.
reliability), and transmission mode (datagram vs. stream). This
field is used by the type of service mechanism which allows ULPs
to select the quality of transmission for a datagram through the
internet.

ll. UDP. User Datagram Protocol.

mm. ULP. Upper Layer Protocol: any protocol above IP in the
layered protocol hierarchy that uses IP. This term includes
transport layer protocols, presentation layer protocols, session
layer protocols, and application programs.

nn. Version. An IP header field indicating the format of the EP
header.

4. GENERAL REQUIREMENTS

 4.1 Design. The Internet Protocol is designed to interconnect packet-
switched communication subnetworks to form an internetwork. The IP trans-
mits blocks of data, called Internet datagrams, from sources to destinations
throughout the Internet. Sources and destinations are hosts located on
either the same subnetwork or connected subnetworks. The IP is purposely
limited in scope to provide the basic functions necessary to deliver a block
of data. Each Internet datagram is an independent entity unrelated to any
other Internet datagram. The IP does not create connections or logical
circuits and has no mechanisms to promote data reliability, flow control,
sequencing, or other services commonly found in virtual circuit protocols.

 4.2 Internet protocol definition. This standard specifies a host IP.
As defined in the DoD architectural model, the Internet Protocol resides in
the internetwork layer. Thus, the IP provides services to transport layer
protocols and relies on the services of the lower network layer protocol
(See figure 1). In each gateway (a system interconnecting two or more sub-
nets) an IP resides above two or more subnetwork protocol entities. Gateways
implement Internet protocol to forward datagrams between networks. Gateways
also implement the Gateway to Gateway Protocol (GGP) to coordinate routing
and other internet control information.

 4.2.1 Protocol implementation. In a gateway the higher level protocols
need not be implemented and the GGP functions are added to the IP module
(See figure 2).

8

 4.2.2 Upper layer protocol. A protocol in an upper layer passes data to
IP for delivery. IP packages the data as an internet datagram and passes it
to the local subnetwork protocol for transmission across the local subnet
If the destination host is on the local subnet, IP sends the datagram through
the subnet directly to that host. If the destination host is on a foreign
subnet, IP sends the datagram to a local gateway. The gateway, in turn,
sends the datagram through the next subnet to the destination host, or to
another gateway. Thus, datagrams move from one IP module to another through
an interconnected set of subnetworks until they reach their destinations.
The sequence of IP modules handling the datagram in transit is called the
gateway route. The gateway route is distinct from the lower level node-to-
node route supplied by a particular subnetwork. The gateway route is based
on the destination internet address. The IP modules share common rules for
interpreting internet addresses to perform internet routing.

 4.2.3 Datagram processing error. Occasionally, a gateway IP or destina-
tion IP will encounter an error during datagram processing. Errors detected
may be reported via the Internet Control Message Protocol (ICMP) which is
implemented in the internet protocol module.

 4.2.4 Fragmentation and reassembly mechanisms. In transit, datagrams may
traverse a subnetwork whose maximum packet size is smaller than the size
of the datagram. To handle this condition, IP provides fragmentation and
reassembly mechanisms. The gateway at the smaller-packet subnet fragments
the original datagram into pieces, called datagram fragments, that are small
enough for transmission. The IP module in the destination host reassembles
the datagram fragments to reproduce the original datagram. IP can support a
diverse set of upper layer protocols (ULPs). A transport protocol with
real-time requirements, such as the Network Voice Protocol (NVP), can make
use of IP's datagram service directly. A transport protocol providing ordered
reliable delivery, such as TCP, can build additional mechanisms on top of
IP's basic datagram service. Also, IP's delivery service can be customized
in some ways to suit the special needs of an upper layer protocol. For
example, a predefined gateway route, called a source route, can be supplied
for an individual datagram. Each IP module forwards the datagram according
to the source route in addition to using the standard routing mechanism.

 4.2.5 IP evolution. The current Internet Protocol evolved from proposals
within the International Federation for Information Processing (IFIP)
Technical Committee 6.1, in which internet functions and reliable transport
functions were combined in a single protocol. Subsequent development of
other ULPs (such as packet speech) led to the separation of these functions
to form IP and the Transmission Control Protocol.

 4.3 Scenario. The following scenario illustrates the model of operation
for transmitting a datagram from one upper layer protocol to another. The
scenario is purposely simple so that IP’s basic operation is not obscured by
the details of interface parameters or header fields.

 4.3.1 Basic model of operation. A ULP in host A is to send data to its
peer protocol in host B on another subnetwork. In this case, the source and
destination hosts are on subnetworks directly connected by a gateway.

a. The sending ULP passes its data to the IP module, along
with the destination internet address and other
parameters.

b. The IP module prepares an IP header and attaches the
ULP's data to form an internet datagram. Then, the IP
module determines a local subnetwork address from the
destination internet address. In this case, it is the address
of the gateway to the destination subnetwork. The internet
datagram along with the local subnet address is passed to the
local subnetwork protocol (SNP).

c. The SNP creates a local subnetwork header and attaches
it to the datagram forming a subnetwork packet. The SNP then
transmits the packet across the local subnet.

10

d. The packet arrives at the gateway connecting the first and
second subnetworks. The SNP of the first subnet strips off
the local subnetwork header and passes the remainder to the IP
module.

a. The IP module determines from the destination internet
address in the IP header that the datagram Is intended for a
host in the second subnet. The IP module than derives a local
subnetwork address for the destination host. That address is
passed along with the datagram to the SUP of the second subnetwork
for delivery.

f. The second subnet’s SNP builds a local subnetwork header and
appends the datagram to form a packet for the second subnet-
work. That packet is transmitted across the second subnet to
the destination host.

g. The SNP of the destination host strips off the local
subnetwork header and hands the remaining datagram to the IP
module.

h. The IP nodule determines that the datagram is bound for a ULP
within this host. The data portion of the datagram and infor-
mation from the IP header are passed to the ULP.

Delivery of data across the internet is complete.

5. SERVICES PROVIDED TO UPPER LAYER

 5.1 Description. This section describes the services offered by the Inter-
net Protocol to upper layer protocols (ULPs). The goals of this section are
to provide the motivation for protocol mechanisms and a definition of the
functions provided by this protocol. The services provided by IP are: internet
datagram service, virtual network service, and error reporting service. A
description of each service follows:

 5.2 Datagram service. The Internet Protocol shall provide a datagram
service between homogeneous upper layer protocols in an Internet environment.
A datagram service is characterized by data delivery to the destination with
non-zero probability; some data may possibly be lost or duplicated. Also, a
datagram service does not necessarily preserve the sequence in which data is
supplied by the source upon delivery at the destination.

 5.2.1 Delivery service. IP shall deliver received data to a destination
ULP in the same form as sent by the source ULP. IP shall discard datagrams
when insufficient resources are available for processing. IP does not detect
datagrams lost or discarded by the subnetwork layer. As part of the delivery
service, IP insulates upper layer protocols from subnetwork-specific charac-
teristics. For example, IP saps Internet addresses supplied by ULPs into
local addresses used by the local subnetwork. Also, IP hides any packet-size
restrictions of subnetworks along the transmission path within the Internet.

 5.3 Generalized network services. IP shall provide to upper layer protocols
the ability to select virtual network service parameters. IP shall provide
a general command set for the ULPs to indicate the services desired. Thus,
the ULPs can tune certain properties of IP and the underlying subnetworks to
customize the transmission service according to their needs.

 5.3.1 Network parameters. The virtual network parameters fall into two
categories: service quality parameters and service options. Service quality
parameters influence the transmission service provided by the subnetworks;
service options are additional functions provided by IP. A brief description
of each follows:

- Service Quality Parameters

- Precedence: attempts preferential treatment for high
 importance datagrams

- Transmission Mode: datagram vs. stream. Stream mode
 attempts to minimize delay and delay dispersion through
 reservation of network resources

- Reliability: attempts to minimize data lose and error
 rate

- Speed: attempts prompt delivery

12

- Resource Tradeoff: indicates relative importance of speed
 vs. reliability

- Service Options

- Security Labeling: identifies datagram for compartmented
 hosts

- Source Routing: selects set of gateway IP modules to visit
 in transit

- Route Recording: records gateway IP modules encountered in
 transit

- Stream Identification: names reserved resources used for
 stream service

- Timestamping: records time information

- Don’t Fragment: marks a datagram as an indivisible unit

 5.4 Error reporting service. IP shall provide error reports to the upper
layer protocols indicating errors detected in providing the above services.
In addition, certain errors detected by lower layer protocols or supplied
in ICMP messages shall be passed to the ULPs. These reports indicate several
classes of errors including invalid arguments, insufficient resources, and
transmission errors. The errors that IP must report to ULPs are to be
determined for each implementation.

6. UPPER LAYER SERVICE/INTERFACE SPECIFICATION

 6.1 Description. This section specifies the IP services provided to upper
layer protocols and the interface through which these services are accessed.
The first part defines the interaction primitives and interface parameters
for the upper interface. The second part contains the abstract machine speci-
fication of the upper layer services and interaction discipline.

 6.2 Interaction primitives. An interaction primitive defines the purpose
and content of information exchanged between two protocol layers. Primitives
are grouped into two classes based on the direction of information flow.
Information passed downward, in this case from a ULP to IP, is called a
service request primitive. Information passed upward, in this case from IP
to a ULP, is called a service response primitive. Interaction primitives
need not occur in pairs. That is, a service request does not necessarily
elicit a service “response;” a service “response” may occur independently of
a service request. The information associated with an interaction primitive
falls into two categories: parameters and data. The parameters describe the
data and indicate how the data are to be treated. The data are not examined
or modified. The format of the parameters and data are implementation
dependent and therefore not specified. A given IP implementation may have
slightly different interaction primitives imposed by the execution environment
or system design factors. In those cases, the primitives can be modified to
include more information or additional primitives can be defined to satisfy
system requirements. However, all IPs must provide at least the interaction
primitives specified below to guarantee that all IP implementations can
support the same protocol hierarchy.

 6.2.1 Service request primitives. A single service request primitive
supports IP's datagram service, the SEND primitive.

 6.2.1.1 SEND. The SEND primitive contains complete control information
for each unit of data to be delivered. IP accepts in a SEND at least the
following information:

- source address - internet address of ULP sending data

- destination address - internet address of ULP to receive
 data

- protocol - name of the recipient ULP

- type of service indicators - relative transmission quality
 associated with unit of data

- precedence - one of eight levels : (PO, Pl, P2, P3, P4,
 P5, P6, P7) where P0 <= Pl <= P2 <= P3 <= P4 <= P5 <= P6
 <= P7

- reliability - one of two levels : (R0, R1) where R0 <= R1

14

- delay - one of two levels : (D0, D1) where D0 <= D1

- throughput - one of two levels : (T0, T1) where T0 <= Tl

- identifier - value optionally provided by this ULP distin
 guishing this portion of data from others sent by this ULP.

- don’t fragment indicator - flag showing whether LP can fragment
 data to accomplish delivery

- time to live - The value in seconds which indicates the maximum
 lifetime of data within the Internet. Time to live is decre-
 mented by one second for each gateway transversed.

- data length - length of data being transmitted

- option data - options requested by a ULP from following list:
 security, loose or strict source routing, record routing,
 stream identification, or timestamp (section 9.3.14).

- data - present when data length is greater than zero.

 6.2.2 Service response primitives. A single service response primitive
supports IP's datagram service, the DELIVER primitive.

 6.2.2.1 DELIVER. The DELIVER primitive contains the data passed by a
source ULP in a SEND, along with addressing, quality of service, and option
information. IP passes In a DELIVER at least the following information:

- source address - Internet address of sending ULP

- destination address - Internet address of the recipient ULP

- protocol - name of recipient ULP as supplied by the sending ULP

- type of service indicators - relative transmission quality
 associated with unit of data

- precedence - one of eight levels : (P0, P1, P2, P3, P4,
 P5, P6, P7) where P0 <= P1 <= P2 <= P3 <= P4 <= P5 <= P6
 <= P7

- delay - one of two levels : (D0, D1) where D0 <= D1

- reliability - one of two levels : (R0, R1) where R0 <= R1

- throughput - one of two levels : (T0, T1) where T0 <= T1

- data length - length of received data (possibly zero)

- option data - options requested by source ULP from following
 list: security, loose source routing, strict source routing,
 record routing, stream identification, or timestamps (sec-
 tion 6.2.14).

- data - present when data length is greater than zero.

In addition, a DELIVER must contain error report from IP either together
with parameters and data listed above, or independent of that information.

 6.3 Extended state machine specification of services provided to upper
layer. The extended state machine defines the behavior of the entire service
machine from the perspective of the upper layer protocol. An extended state
machine definition is composed of a machine instantiation identifier, a
state diagram, a state vector, a set of data structures, an event list, and
an events and actions correspondence.

 6.3.1 Machine instantiation identifier. Each upper Interface state machine
is uniquely identified by the four interaction primitive parameters: source
address, destination address, protocol, and identifier. One state machine
instance exists for the SEND and DELIVER primitives whose four parameters
carry identical values.

 6.3.2 State diagram. The upper interface state machine has a single state
which never changes. No diagram is needed.

 6.3.3 State vector. The upper interface state machine has a single state
which never changes. No state vector is needed.

 6.3.4 Data structures. For clarity in the events and actions section, data
structures are declared for the interaction primitives and their parameters.
A subset of Ada data constructs, common to most high level languages, is 1

used. However, a data structure may be partially typed or completely untyped
where specific formats or data types are implementation dependent.

 6.3.4.1 From ULP. The from ULP structure holds the interface parameters
and data associated with the SEND primitive specified above. This structure
directly corresponds to the from ULP structure declared in 9.4.4.2 of the
mechanism section. The from ULP structure is declared as:

type from ULP_type is
 record
 source addr
 destination addr
 protocol
 type of_service is

ada is a registered trademark of the Department of Defense (Ada Joint Program1

Office).

16

 record
 precedence
 delay
 throughput
 reliability
 end record;
 identifier
 dont fragment
 time to live
 length
 options
 data
end record;

 6.3.4.2 To ULP. The to ULP structure holds interface parameters and data
associated with the DELIVER primitive as specified in section 6.2.2. This
structure directly corresponds to the to ULP structure declared in 9.4.4.3
of the mechanism specification. The to ULP structure is declared as:

type to ULP type is
 record
 source addr
 destination addr
 protocol
 type_of_service is
 record
 precedence
 delay
 reliability
 throughput

 end record;
 length
 options
 data
 error
 end record;

 6.3.5 Event list. The events are drawn from the interaction primitives
specified in section 6.2 above. An event is composed of a service primitive
and an abstract timestamp to indicate the time of event initiation. The
event list is as follows:

a. SEND(from ULP) at time t

b. NULL - Although no service request is issued by a ULP, cer-

 tain conditions within IP or lower layers produce a service

 response. These conditions can include duplication of data

 and subnet errors.

 6.3.6 Events and Actions. The following section defines the set of possible
actions elicited by each event.

 6.3.6.1 EVENT = SEND (from ULP) at time t.

Actions:

1. DELIVER to ULP at time t+N to the protocol designated by
 from ULP.protocol at destination from ULP.destination addr
 with all of the following properties:

a. The time elapsed during data transmission satisfies
 the time-to-live limit, i.e., N <= from ULP.time
 to live.

b. The quality of data transmission is at least equal
 to the relative levels specified by from ULP.type_
 of service.

c. if (from ULP.dont fragment = TRUE) then IP fragmen-
 tation has not occurred in transit.

d. if (from ULP.options includes loose source routing)
 then to ULP.data has visited in transit at least
 the gateways named by source route provided by SEND.

e. if (from ULP.options includes strict source rout-
 ing) then to ULP.data has visited in transit only the
 gateways named by source route provided by SEND.

f. if (from ULP.options includes record routing) then
 the list of nodes visited in transit is delivered
 in to ULP.

g. if (from ULP.options includes security labeling)
 then the security label is delivered in to ULP.

h. if (from ULP.options includes stream identifier)
 then the stream identifier is delivered in to ULP.

i. if (from ULP.options includes internet timestamp)
 then the internet timestamp is delivered in to ULP.

OR,

2. DELIVER to the protocol designated by from ULP.protocol at
 source from ULP.source addr indicating one of the following
 error conditions:

a. destination from ULP.destination addr unreachable

18

b. protocol from ULP.protocol unreachable

c. if (from ULP.dont fragment = TRUE) then fragmentation
 needed but prohibited

d. if (from ULP.options contains any option) then parameter
 problem with option.

OR,

3. no action
 6.3.6.2 EVENT = NULL.

Actions:
1. DELIVER to the protocol designated by from ULP.protocol at
 source from ULP.source addr indicating the following error
 condition:

a. error conditions in subnet layer

OR,

2. DELIVER to ULP at time t+N to the protocol designated by from
 ULP.protocol at destination from ULP.destination addr with
 all of the following properties:

a. The time elapsed during data transmission satisfies the
 time-to-live limit, i.e. N <= from ULP.time to live.

b. The quality of data transmission is at least equal to the
 relative levels specified by from ULP.type_of_
 service.

c. if (from ULP.dont fragment = TRUE) then IP fragmentation
 has not occurred in transit.

d. if (from ULP.options includes loose source routing)
 then to ULP.data has visited in transit at least the
 gateways named by source route provided in SEND.

e. if (from ULP.options includes strict source routing)
 then to ULP.data has visited in transit only the gate-
 ways named by source route provided in SEND.

f. if (from ULP.options includes record routing) then the
 list of nodes visited in transit in delivered in to ULP.

g. if (from ULP.options includes security labeling) then
 the security label is delivered in to ULP.

h. if (from ULP.options = includes stream identifier)
 then the stream identifier is delivered in to ULP.

i. if (from ULP.options includes internet timestamp)
 then the internet timestamp is delivered in to ULP

20

7. SERVICES REQUIRED FROM LOWER LAYER

 7.1 Description. This section describes the minimal services required of
the subnetwork layer. The services required are: transparent data transfer
between hosts within a subnetwork and error reporting. A description of
each service follows.

 7.2 Data transfer. The subnetwork layer must provide a transparent data
transfer between hosts within a single subnetwork. Only the data to be
delivered, and the necessary control and addressing Information should be
required as input from IP. Intranet routing and subnetwork operation shall
be handled by the subnetwork layer itself. The subnetwork need not be a
reliable communications medium. Data should arrive with non-zero probability
at a destination. Data say not necessarily arrive in the same order as it
was supplied to the subnetwork layer, nor is data guaranteed to arrive error
free.

 7.3 Error reporting. The subnetwork layer shall provide reports to IP
indicating errors from the subnetwork and lower layers as feasible. The
specific error requirements of the subnetwork layer are dependent on the
individual subnetworks.

8. LOWER LAYER SERVICE/INTERFACE SPECIFICATION

 8.1 Description. This section specifies the minimal subnetwork protocol
services required by IP and the interface through which those services are
accessed. The first part defines the interaction primitives and their param-
eters for the lower interface. The second part contains the abstract machine
specification of the lower layer services and interaction discipline.

 8.2 Interaction primitives. An interaction primitive defines the purpose
of information exchanged between two protocol layers. Two kinds of primitives,
based on the direction of information flow, are defined. Service requests
pass information downward; service responses pass information upward. These
primitives need not occur in pairs, nor in a synchronous manner. That in,
a request does not necessarily elicit a “response;” a “response” may occur
independently of a request. The information associated with an interaction
primitive falls into two categories: parameters and data. The parameters
describe the data and indicate how the data are to be treated. The data are
not examined or modified and the format of interaction primitive information
is implementation dependent and is therefore not specified. A given IP
implementation may have slightly different interfaces imposed by the nature
of the subnetwork or execution environment. Under such circumstances, the
primitives can be modified to either include more parameters or have addi-
tional primitives defined. However, all IPs must provide at least the
interface specified below to guarantee that all IP implementations can
support the same protocol hierarchy.

 8.2.1 Service request primitives. A single service request primitive is
required from the SNP, a SNP SEND primitive.

 8.2.1.1 SEND. The SNP SEND contains an IP datagram, a destination, and
parameters describing the desired transmission quality. The SNP receives
in an SNP SEND at least the following information:

- local destination address - local subnetwork address of destina-
 tion host or gateway

- type of service indicators - relative transmission quality
 associated with the datagram

- precedence - one of eight levels: (P0, P1, P2, P3,
P4,
 P5, P6, P7) where P0 <= P1 <= P2 <= P3 <= P4 <= P5 <= P6
 <=P7

- reliability - one of two levels: (R0, R1) where R0 <=
R1

- delay - one of two levels: (D0, D1) where D0 <= D1

- throughput - one of two levels: (T0, T1) where T0 <=
T1

- length - size of the datagram

- datagram

22

 8.2.2 Service response primitives. One service response primitive is
required to support IP's datagram service, the SNP DELIVER primitive.

 8.2.2.1 SNP DELIVER. The SNP DELIVER contains only a datagram which is
an independent entity containing an IP header and data. An IP receives in
an SNP DELIVER at least the following information:

- datagram

In addition, a SNP DELIVER may contain error reports from the SNP, either
together with a datagram or independent of one.

 8.3 Extended state machine specification of services required from lower
later. The extended state machine defines the behavior of the entire service
machine with respect to the lower layer protocol. An extended state machine
definition is composed of a machine instantiation Identifier, a state diagram,
a state vector, a set of data structures, an event list, and an events and
actions correspondence.

 8.3.1 Machine instantiation identifier. Each lower interface state machine
is uniquely identified by the four values:

- source address

- destination address

- protocol

- identification

These values are drawn from header fields of the datagram passed by the SNP
 SEND and SNP DELIVER primitives. One state machine instance exists for the
interaction primitives whose parameters carry the same values.

 8.3.2 State diagrams. The lower interface state machine has a single
state which never changes. No diagram is needed.

 8.3.3 State vector. No state vector is needed for the lower interface
state machine.

 8.3.4 Data structures. For clarity in the events and actions section,
data structures are declared for the interaction primitives end their parame-
ters. These structures are declared in a subset of Ada composed of constructs
common to most high level languages. However, a data structure say be par-
tially typed or completely untyped where specific formats or data types are
implementation dependent.

 8.3.4.1 From SNP. The from SNP structure holds the interface parameters
and datagram associated with the SNP DELIVER primitive, as specified in
section 8.2.2.1 This structure directly corresponds to the from SNP structure
declared in section 9.4.4.4 of the mechanism specification. The from SNP
structure is declared as:

type from SNP type is
 record
 source destination addr
 dtgm: datagram type;
 error
 end record;

The dtgm element is itself a structure as specified below.

 8.3.4.2 To SNP. The to SNP structure holds the data and parameters
associated With the SNP SEND primitive specified in section 8.3.1. This
structure directly corresponds to the to SNP structure declared in section
9.4.4.5 of the mechanism specification. The to SNP structure is declared as:

type to SNP_type is
 record
 local destination addr
 type_of_service indicators
 length
 dtgm: datagram type;
 end record;

The dtgm element is itself a structure as specified below.

 8.3.4.3 Dtgm. The dtgm structure holds a datagram made up of a header
portion and a data portion as specified in section 9.3. A dtgm structure is
declared as:

type datagram type is
 record
 version: HALF OCTET;
 header length: HALF OCTET;
 type_of_service: OCTET;
 total length: TWO OCTETS;
 identification: TWO OCTETS;
 dont frag_flag: BOOLEAN;
 more frag_flag: BOOLEAN;
 fragment offset: ONE N FIVE EIGHTHS OCTETS;
 time to live: OCTET;
 protocol: OCTET;
 header checksum: TWO OCTETS;
 source addr: FOUR OCTETS;
 destination addr: FOUR OCTETS;
 options: option type;
 data: array(l..DATA LENGTH) of INTEGER;
 end record;

subtype HALF OCTET is INTEGER range 0..15;
subtype OCTET is INTEGER range 0..255;
subtype ONE N FIVE EIGHTHS OCTETS is INTEGER range 0..8191;
subtype TWO OCTETS is INTEGER range 0..65535;
subtype FOUR OCTETS is INTEGER range 0..4294967295;

24

 8.3.5 Event list. The events are drawn from the service primitives
specified in section 5.1 above. An event is composed of a service primitive
with its parameters and data.

a. SNP SEND (to SNP)

b. NULL - Although IP issues no service request, certain conditions
 within the subnet layer elicit a service response.

 8.3.6 Events and actions. The following section defines the set of possible
actions elicited by each event.

 8.3.6.1 EVENT = SNP SEND (to SNP).

ACTIONS:

1. SNP DELIVER Datagram to IP at local destination (LD) with
 all of the following properties:

a. The quality of data transmission is at least equal to
 the relative levels specified by to SNP.type_of ser-
 vice.

OR,

2. no action

 8.3.6.2 EVENT = NULL.

ACTIONS:

1. SNP DELIVER from SNP indicating the following error condition:

a. error conditions within the subnet layer

9. IP ENTITY SPECIFICATION

 9.1 Description. This section defines the mechanisms of an IP entity
supporting the services provided by the IP service machine. The first
subsection motivates the specific mechanisms chosen and describes their
operation. The second subsection defines the format and use of the IP header
fields. The last subsection specifies an extended state machine representa-
tion of the protocol entity. The implementation of a protocol entity must
be robust. Each implementation must expect to interoperate with others
created by different individuals. While the goal of this specification is
to be explicit about the entity mechanisms, there is always the possibility
of differing interpretations. In general, an implementation must be conser-
vative in its sending behavior, and liberal in its receiving behavior. That
is, it must be careful to send well-formed datagrams, but must accept any
datagram that it can interpret.

 9.2 Overview of IP mechanisms. The IP mechanisms are motivated by the
IP services, described in section 5 are datagram delivery service, virtual
network service, and error reporting service. Each service could be sup-
ported by any of a set of mechanisms. The selection of mechanisms is guided
by design standards including simplicity, generality, flexibility, and
efficiency. The following mechanism descriptions identify the service or
services supported, discuss the design criteria used in selection, and explain
how the mechanisms work.

 9.2.1 Routing mechanism. IP contains an adaptive routing mechanism to
support the delivery service. The routing mechanism uses the internet
addressing scheme and internet topology data to direct datagrams along the
best path between source and destination. The mechanism provides routing
options for ULPs needing the flexibility to select routes and record routing
information. A distinction is made between names. addresses, and routes. A
name indicates the object sought, independent of physical location. An
address indicates where the object is and a route indicates how to get there.
It is the task of the upper layer protocols to map from names to addresses.
The internet protocol maps from internet addresses to local subnet addresses
to perform routing through the internet. It is the task of lower layer
protocols to route the datagram to the appropriate local subnet destination
addresses.

 9.2.1.1 Internet addresses. Internet addresses have a fixed length of
four octets (32 bits). An internet address begins with a network number
followed by a local address (called the REST field). To provide for flex-
ibility in assigning addresses to networks and allow for the large number of
small to medium sized networks, there are four formats or classes of internet
addresses. These classes are shown in the following diagram:

26

 9.2.1.1.1 Internet addressing classes. In “class a,” the high order bit
is zero, the next seven bits specify the network, and the last 24 bits specify
the local address. In 'class b.' the high order two bits are one-zero, the
next 14 bits are the network and the last 16 bits are the local address. In
“class c,” the high order three bits are one-one-zero, the next 21 bits are
the network and the last eight bits are the local address. In the extended
addressing class, the high order three bits are one-one-one, the next 29
bits have no defined format. The mapping between Internet addresses and
local not addresses should allow a single physical host to act as several
distinct Internet hosts. Also, some boats will have several physical inter-
faces (i.e., be multi-homed). That is, provision must be made for a host to
have several physical interfaces to a subnetwork, with each having several
logical Internet addresses.

 9.2.1.1.2 Datascan routing. To route a datagram, an IP module examines
the NETWORK field of the Internet address indicating the destination for the
datagram. If the network number is the same as the IP module’s subnetwork,
the module uses the REST field of the Internet address to derive the local
subnet address of the destination host. If the network number does not

match, the module determines a local subnet address of a gateway on the best
path to the destination subnetwork. In turn, the gateway IP module derives
the next local subnet address to either a host or gateway. In this way, the
datagram is relayed through the internet to the destination host. In a
static environment the routing algorithm is straightforward. However,
internet topology tends to change due to hardware or software failure, host
availability, or heavy traffic load conditions. Therefore, each host and
gateway IP along the gateway route also uses its current knowledge of internet
topology to make routing decisions.

 9.2.1.2 Routing options. IP provides a mechanism, called source routing,
to supplement the gateway’s independent routing decisions. This mechanism
allows an upper layer protocol to influence the gateway route in which a
datagram traverses. The ULP can pass a list of internet addresses, called a
source route list, as one of the SEND service request parameters. Each
address on the list, except for the last, is an intermediate gateway destina-
tion. The last address on the list is the final destination. The source IP
module uses its normal routing mechanism to transmit the datagram to the
first address in the source route list. Then the gateway IP replaces source
route list entry with its own address as known in the environment into which
it is forwarding the datagram. Thus, the datagram follows the source route
while recording its “inverse” or recorded route.

 9.2.1.2.1 Routing types. Two kinds of source routing are provided by IP:
loose and strict. With loose source routing, the host and gateway IP modules
along the route may use any number of other intermediate gateways to reach
the addresses in the source list. With strict source routing, the datagram
must travel directly (i.e. through only the directly connected subnetwork
indicated by each address) to each address on the source list. When the
source route cannot be followed, the source host IP is notified with an
error message, For testing or diagnostic purposes, a ULP can acquire a
datagram’s record route (independent of the source route option) by using
the record route mechanism. The sending ULP supplies an empty record route
list and indicates that the gateway route is to be recorded in transit.
Then, as each gateway IP module on the gateway route relays the datagram, it
adds its address an known in the succeeding environment to the record route
list. The destination ULP receives the original datagram along with the
record route list which, if reversed, provides a source route to the sending
ULP. If more gateways are traversed than can be recorded La the list, the
additional gateway addresses are not recorded. Problems with the record
route option discovered in transit are reported to the source host IP.
When using a routing option, the source ULP must provide a large enough
route list to accommodate all the routing information expected. The size
of a routing option does not change due to adding addresses.

 9.2.2 Fragmentation and reassembly. IP contains a fragmentation mechanism
for breaking a largo datagram into smaller datagrams. This solution to the
problems arising from the difference between variable subnetwork capacity
provides greater flexibility than legislating a restrictive datagram size
that is sufficiently small for any subnetwork on the internet. This mechanism
can be overridden using the “don't fragment” option to prevent fragmentation.
IP also contains a reassembly mechanism which reverses the fragmentation to

28

enable delivery of intact data portions. Normally, fragmentation is per-
formed only by the IP modules in gateways. There is no need for fragmentation
of datagrams within the IP modules of hosts since the amount of data supplied
by a source ULP can be limited, thereby avoiding datagrams which are too big
to be transmitted through the subnetwork to which the host is attached. When
an IP module encounters a datagram that is too big to be transmitted through
a subnetwork, it applies its fragmentation mechanism. First, the module
divides the data portion of the datagram into two or more pieces. The data
must be broken on 8-octet boundaries. For each piece, it then builds a data-
gram header containing the identification, addressing, and options information
needed. Fragmentation data is adjusted in the new headers to correspond to
the data's relative position within the original datagram. The result is a
set of small datagrams, called fragments, each carrying a portion of the
data from the original large datagram. Section 9.4.6.3.7 defines the
fragmentation algorithm.

 9.2.2.1 Fragment routing. Each fragment is handled independently until
the destination IP module is reached. The fragments may follow different
gateway routes as Internet topology and traffic conditions change. They are
also subject to further fragmentation if 'smaller-packet' subnetworks are
subsequently traversed. Every IP module must be able to forward a datagram
of 68 octets without further fragmentation. This size allows for a header
length of up to 60 octets and the minimum data length of 8 octets.

 9.2.2.2 Fragment reassembly. To reassemble fragments into the original
datagram, an IP module combines all those received having the same value
for the identification, source address, destination address, security, and
protocol. IP allocates reassembly resources when a “first-to-arrive”
fragment is recognized. Based on the fragmentation data in the fragment's
header, the fragment is placed in a reassembly area relative to its position
in the original datagram. When all the fragments have been received, the
IP module passes the data in its original form to the destination ULP. All
hosts must be prepared to accept datagrams of up to 576 octets (whether they
arrive whole or in fragments). It is recommended that hosts send datagrams
larger than 576 octets only if they have assurance that the destination is
prepared to accept the larger datagrams. The number 576 is selected to
allow a reasonable amount of data to be transmitted in addition to the
required header Information. For example, this size allows a data block of
512 octets plus 64 header octets to fit in a datagram. The maximum Internet
header size is 60 octets, and a typical Internet header is 20 octets, allowing
a margin for headers of upper layer protocols.

 9.2.2.3 Fragment loss. Because the subnetwork may be unreliable, some
fragments making up a complete datagram can be lost. IP uses the “time-to-
live” data (explained in section 9.2.4 below) to set a timer on the reassembly
process. If the timer expires before all the fragments have been collected,
IP discards the partially reassembled datagram. Only the destination IP
module should perform reassembly. This recommendation is intended to reduce
gateway overhead and minimize the chance of deadlock. However, reassembly
by private agreement between gateways is transparent to the rest of the

internet and in allowed. A ULP can prevent its data from being broken into
smaller pieces during transmission. IF provides an override mechanism to
prohibit fragmentation called “don’t fragment.” One example of the “don’t
fragment” mechanism is the down line loading of a small host containing only
a simple boot strap program to accept data from a datagram, storing it in
memory, and executing it. Any internet datagram marked “don't fragment” cannot
be fragmented by an IP module along the gateway route under any
circumstances. If an IP module cannot deliver such a datagram to its
destination without fragmenting it, the module discards the datagram and
returns an error to the source IP. Note that fragmentation, transmission,
and reassembly at the subnetwork layer is transparent to IP and can be used at
any time.

 9.2.3 Checksum. IF assumes the subnetwork layer to be unreliable regard-
less of the actual subnetwork protocol present. Therefore, IF provides a
checksum mechanism supporting the delivery service to protect the IP header
from transmission errors. The data portion is not covered by the IF checksum.
If IP enforced a data checksum and discarded datagrams with data checksum
failures, it could not support applications that require high throughput and
can tolerate a low error rate. An IP module recomputes the checksum each
time the IP header is changed. Changes occur in transit during time-to-live
reductions, option updates (both explained below), and fragmentation. The
checksum is currently a simple one's complement algorithm, and experimental
evidence indicates its adequacy. However, the algorithm is provisional and
may be replaced by a CRC procedure, depending on future experience.

 9.2.4 Time-to-live. As mentioned in the routing discussion above, a
datagram’s transmission path is subject to changes in internet topology and
traffic conditions. Inadvertently, a datagram might be routed on a circuitous
path to arrive at its destination after a considerable delay. Or, a datagram
could loop through the same IP modules without making real progress towards
its destination. Such “old datagrams” reduce internet bandwidth and waste
processing time. To prevent these problems, IP provides a mechanism to
limit the lifetime of a datagram, called time-to-live. Along with the other
sending parameters, a ULP specifies a maximum datagram lifetime in second
units. Each IF module on the gateway route decreases the time-to-live value
carried in the IP header. If an IF module receives an expired datagram, it
discards the datagram. The lifetime limit is in effect until the datagram’s
data is delivered to the destination ULP. That is, if a datagram is frag-
mented during transmission, it can still expire during the reassembly process.
Section 9.4.4.3 defines the reassembly algorithm use of the time-to-live data.

 9.2.5 Type of service. In support of the virtual network service, the
type of service mechanism allows upper layer protocols to select the trans-
mission quality. IP passes the type of service (TOS) command set for
service quality to the SNP where it is mapped into subnetwork-specific
transmission parameters. Not every subnetwork supports all transmission
services, but each SNP on the delivery path should make its best effort to
match the available subnet services to the desired service quality. The TOS
command set includes precedence level, a delay indication, a-throughput
indication, and a reliability indication. Precedence is a measure of a

30

datagram’s importance, A subnetwork say treat high precedence traffic
more important than other traffic by preferentially allocating subnetwork
resources especially during time of high load. The eight precedence levels
begin with the lowest, Routine, and increase up to the two highest levels,
Internetwork Control and Network Control. The highest precedence level,
Network Control, is intended for use only within a subnetwork. The Internet-
work Control level is intended for use by gateway control originators only.
The actual use and access to these precedence levels is the responsibility
of each subnetwork. Aside from precedence, the major service choice is a
three-way tradeoff between low delay, high reliability, and high throughput.
In many networks better performance for one of these parameters is coupled
with worse performance for another. Except for very unusual cases, not more
than two of these three indications should be set. The use of these service
quality indications may increase the cost (in some sense) of the service.
Section 9.3.15 specifies the legal values of the type of service indicators
to be carried in the datagram header.

 9.2.6 Data options. Motivated by the virtual network service, IP provides
options to carry certain identification and timing data In a standard manner
through the Internet. The use of this mechanism by the ULPs is optional, as
the name implies, but all options must be supported by each IP implementation.
The data options carry three kinds of information: security, stream identifi-
cation, and timing. The security data is used by DoD hosts needing to trans-
mit security information throughout the Internet in a standard manner. The
security information (required if classified, restricted, or compartmented
traffic is passed) includes security level, compartments, handling restric-
tions, and transmission control code. The stream identification option
provides a way for a stream identifier to be carried both through stream-
oriented subnetworks, for example SATNET, and subnets not supporting the
stream concept.

 9.2.6.1 Timing Information. Timing information, in the form of timestamps,
is recorded by IP modules as the datagram traverses the internetwork to its
destination. The source ULP provides a timestamp list and indicates timing
information is to be recorded. The timestamp can be recorded In one of
three formats. The first format requires each gateway IP module on the
gateway route to register only its tinestamp in the next free list entry.
The second format requires each gateway IP to register both Its Internet
address and its tinestamp. The third format requires a timestamp to be
registered only if the next list entry containing a prespecified Internet
address matches the gateway IP's address. These formats are specified in
section 9.2.15. A timestamp in a 32-bit value marking the current time in
milliseconds since midnight Universal Time (UT). If the time is not available
in milliseconds, or cannot be provided with respect to midnight UT, then any
time may be Inserted If the high order bit of the timestamp field is set to
one, indicating the use of a non-standard value. When using the timestamp
option, the source ULP must provide a large enough list to accommodate all
the timestamp information expected. The size of the option does not change
due to adding timestamps. The initial contents of the timestamp list must be
zero or Internet address/zero pairs. If the timestamp data area Is already
full (the pointer exceeds the length) the datagram is forwarded without

inserting the timestamp, but the overflow count is incremented by one. If
there is some room but not enough for a full timestamp to be inserted, or
the overflow count itself overflows, the original datagram is considered
to be in error and is discarded. In either case, an ICMP parameter problem
message may be sent to the source host. Errors encountered by the gateway
IPs during timestamp processing are reported to the source IP.

 9.2.7 Error report datagrams The error reporting service motivates a
mechanism to generate and process error information. The error mechanism
uses the datagram delivery service to transfer the error reports between IP
modules.

 9.3 Message format for poor exchanges. A summary of the contents of the
IP header follows. Note that each tick mark represents a one bit position.
Each field description below includes its name, an abbreviation, and the
field size. Where applicable, the units, the legal range of values, and a
default value appears.

 9.3.1 Version.

 abbrev: VER field size: 4 bits

The Version field Indicates the format of the IP header. This document
describes version 4.

 9.3.2 Internet header length.

 abbrev: IHL field size: 4 bits
 units: 4-octet group range: 5 - 15 default: 5

Internet Header Length is the length of the IP header in 32-bit words and
points to the beginning of the data. Note that the minimum value for a
correct header is 5.

 9.3.3 Type of service.

 abbrev: TOS field size: 8 bits

The Type of Service field contains the IP parameters describing the quality

32

of service desired for this datagram.

 9.3.4 Total length.

 abbrev: TL field size: 16 bits
 units: octets range: 20 - 2**16-1 default: 20

Total Length is the length of the datagram, measured in octets, including
header portion and the data portion of the datagram.

 9.3.5 Identification.

 abbrev: ID field size: 16 bits

An identifying value used to associate fragments of a datagram. This value
is usually supplied by the sending ULP as an interface parameter. If not,
IP generates datagram identifications which are unique for each sending ULP.

9.3.6 Flags.

 abbrev: none field size: 3 bits

This field contains the control flags “don’t fragment,” which prohibits
IP fragmentation and, “more fragments,” which helps to identify a fragment's
position in the original datagram.

 9.3.7 Fragment offset.

 abbrev: FO field size: 13 bits
 units: 8-octet groups range: 0 - 8191 default: 0

This field indicates the positions of this fragment’s data relative to the
beginning of the data carried in the original datagram. Both a complete
datagram and a first fragment have this field set to zero. Section 9.2.2
describes the fragmentation mechanism.

 9.3.8 Time-to-live.

 abbrev: TTL field size: 8 bits
 units: seconds range: 0 - 255(=4.25 mins) default: 15

This field indicates the maximum time the datagram is allowed to remain in
the internet. If the value of this field drops to zero, the datagram should
be destroyed. Section 9.2.4 describes the time-to-live mechanism.

 9.3.9 Protocol.

 abbrev: PROT field size: 8 bits

This field indicates which ULP is to receive the data portion of the datagram.
The numbers assigned to common ULPs are available from the DoD Executive
Agent for Protocols.

 9.3.10 Header checksum.

 abbrev: none field size: 16 bits

34

This field contains the checksum covering the IP header. The checksum
mechanism is described in section 9.2.3.

 9.3.11 Source address

 abbrev: source field size: 32 bits

This field contains the internet address of the datagram's source host.
Internet address formats are discussed in section 9.2.1.

 9.3.12 Destination address.

 abbrev: dest field size: 32 bits

This field contains the internet address of the datagram's destination
host. Internet address formats are discussed in section 9.2.1.

 9.3.13 Options.

 abbrev: non e field size: variable

The option field is variable in length depending on the number and types of
options associated with the datagram. The options mechanisms are discussed
in sections 9.2.1 and 9.2.6. Options have two formats:

a. a single octet of option-type, or

b. a variable length string containing:

 1. an option-type octet,

 2. an option-length octet - counting the option-type octet and
 option-length octet as well as the option-data octets, and

 3. the actual option-data octets.

The option-type octet is viewed as having 3 fields:

 9.3.13.1 Internet options defined. The following internet options are
defined:

CLASS NUMBER LENGTH DESCRIPTION
----- ------ ------ -----------
0 0000 - End of Option list: This option occupies

 only 1 octet; it has no length octet.
0 00001 - No Operation: This option occupies only 1

 octet; it has no length octet.
0 00010 11 Security: Used to carry security level,

 Compartmentation, User Group (TCC), and
 Handling Restriction Codes compatible with
 DoD requirements.

0 00011 var. Loose Source Routing: Used to route the
 datagram based on information supplied by
 the source.

0 01001 var. Strict Source Routing: Used to route the
 datagram based on information supplied by
 the source.

0 00111 var. Record Route: Used to trace the route a
 datagram takes.
0 01000 4 Stream ID: Used to carry the stream

 identifier.
2 00100 var. Internet Timestamp: Used to accumulate timing

 information in transit.

 9.3.14 Padding.

 abbrev: none field size: variable (8 to 24 bits)

The IP header padding is used to ensure that the IP header ends on a
32-bit boundary. The padding field is set to zero.

 9.3.15 Specific option definitions. Each option format is defined below.
“Option type” indicates the value of the option-type octet, and “length”
indicates the value of the length-octet if appropriate.

 9.3.15.1 End of option list.

 option type: 0 option length: N/A

This one-octet option marks the end of the option list when it does not
coincide with the four-octet boundary indicated by the IP header length.
This field is used following the last option, not the and of each option,
and need only be used if the last option would not otherwise coincide with
the end of the IP header. This option may be introduced or deleted upon
fragmentation as needed.

36

 9.3.15.2 No operation.

 option type: 1 option length: N/A

This option may be used between options, for example, to align the beginning
of a subsequent option on a 32-bit boundary. This option may be introduced
or deleted upon fragmentation as needed.

 9.3.15.3 Security.

 option type: 130 option length: 11

This option (required if classified, restricted, or compartmented traffic is
passed) provides a way for hosts to send Security level, Compartmentation,
Handling Restriction Codes and User Groups (TCC) parameters through subnet-
works in a standard manner. This option must be copied on fragmentation.
This option appears at most once in a datagram.

The format for this option is as follows:

 9.3.15.3.1 Security (S field).

 length: 16 bits.

This field specifies one of 16 levels of security, eight of which are reserved
for future use.

00000000 00000000 - Unclassified
11110001 00110101 - Confidential
01111000 10011010 - EFTO
10111100 01001101 - MMMM
01011110 00100110 - PROG
10101111 00010011 - Restricted
11010111 10001000 - Secret
01101011 11000101 - Top Secret
00110101 11100010 - (Reserved for future use)
10011010 11110001 - (Reserved for future use)
01001101 01111000 - (Reserved for future use)
00100100 10111101 - (Reserved for future use)
00010011 01011110 - (Reserved for future use)
10001001 10101111 - (Reserved for future use)

11000100 11010110 - (Reserved for future use)
11100010 01101011 - (Reserved for future use)

 9.3.15.3.2 Compartments (C field).

 length = 16 bits

This field contains an all zero value when the information transmitted is
not compartmented. Other values for the compartments field may be obtained
from the Defense Intelligence Agency (DIA).

 9.3.15.3.3 Handling restrictions (H field).

 length = 16 bits

The values for the control and release markings are alphanumeric digraphs
and are defined in the Defense Intelligence Agency Manual DIAM 65-19,
“Standard Security Markings.”

 9.3.15.3.4 Transmission control code (TCC field).

 length = 24 bits

This field provides a means to segregate traffic and define controlled
communities of interest among subscribers. The TCC values are trigraphs and
are available from Headquarters, DCA (Code 530).

 9.3.15.4 Loose source and record route.

 option type: 131 option length: variable

The loose source route option provides a way for the source ULP of a
datagram to supply routing information to be used by IP modules along the
gateway route. At the same time, the “inverse” route to recorded in the
option field. This option is not copied on fragmentation. It appears at
most once in a datagram. The option begins with the option type code. The
second octet is the option length which includes the option type octet, the
length octet, the pointer octet, and the source route list. The third octet
is a pointer into the route data indicating the octet which begins the next
source address to be processed. The pointer in relative to this option, and
its smallest legal value is 4. A loose source route list to composed of one
or more internet addresses identifying intermediate gateways to be visited
in transit. Each Internet address is 4 octets long. When a gateway in the
source route list is visited, the gateway address (as known in the environ-
ment into which the datagram is being forwarded) replaces that list entry.
The size of this option is fixed by the source. It cannot change to accom-
modate additional information. The routing options are described to section
9.2.1.1.

38

 9.3.15.5 Strict source and record route.

 option type: 137 option length: variable

The strict source route option provided a way for the source ULP of a data-
gram to name the exact set of IP modules to be visited along the gateway
route. At the same time, the 'inverse' route is recorded in the option
field. This option must be copied on fragmentation. It appears at most
once in a datagram. The option begins with the option type code. The second
octet is the option length which includes the option type octet, the length
octet. the pointer octet, and the source route list. The third octet is a
pointer into the route data indicating the octet which begins the next source
address to be processed. The pointer is relative to this option, and its
smallest legal value is 4. A strict source route list is composed of one or
more internet addresses Identifying the gateways to be visited in transit.
The datagram must visit exactly the gateways listed, traversing only the
directly connected subnetworks indicated in the route list addresses. When
a gateway in the source route list is visited, the gateway address (as known
in the environment into which the datagram in being forwarded) replaces that
list entry. The size of this option is fixed by the source. It cannot change
to accommodate additional information. Routing options are described in
section 9.2.1.1.

 9.3.15.6 Record route.

 option type: 7 option length: variable

The record route option provides a way to record a datagram's gateway route.
This option is not copied on fragmentation. It appears at most once in a
datagram. The option begins with the option type codes The second octet is
the option length which includes the option type code. the length octet,
and the return route list. The third octet is a pointer Into the route data
indicating the octet which begins the next area to store a route address.
The pointer in relative to this option, and the smallest legal value for
the pointer is 4. A record route list is composed of a series of internet
addresses. Each internet address is 4 octets long. The source ULP provides
a route list with zero value entries. An each gateway is visited in transit,
it registers Its address In the next free entry (indicated by the pointer).
When the pointer is greater than the length. the record route list is full.
No additional addresses are recorded, even if more are visited before
arriving at the destinations The size of this option is fixed by the source.
It cannot change to accommodate additional information. The routing options
are described in section 9.2.1.1.

 9.3.15.7 Stream Identifier.

 option type: 136 option length: 4

This option provides a way for 16-bit stream identifiers to be carried through
the internet for use by subnetworks supporting the stream concept such as
the SATNET. The stream identifier appears in the third and fourth octets of

the option. This option must be copied on fragmentation. It appears at
most once in a datagram.

 9.3.15.8 Internet timestamp.

 option type: 68 option length: variable

This option allows timing information to be gathered as a datagram travels
through the internet to its destination. This option is not copied upon
fragmentation and so appears only in the first fragment. This option may
appear at most once in a datagram. The first octet is the option type. The
second octet is the length of the option including the option type octet,
the length octet, the pointer octet, the overflow/flag octet, and each time-
stamp or address/timestamp pair. The third octet is a pointer into the
timestamp list identifying the octet beginning the space for the next time-
stamp. The pointer is relative to the beginning of this option; its smallest
legal value is 5. The fourth octet is shared by overflow and format flag
information. The first four bits record the number of IP modules that could
not register timestamps due to lack of space. The second four bits indicate
the format of the timestamp list:

0 - timestamps only, stored in consecutive 32-bit words
1 - each timestamp is preceded with the Internet address
 of the registering entity
2 - reserved for future use
3 - the internet address fields are prespecified by the
 source ULP. An IP module only registers its timestamp

 if its address matches the next one in the list.

The size of this option is fixed by the source. It cannot change to accom-
modate additional information. The internet timestamp option is described
in section 9.2.6.

 9.4 Extended state machine specification of IP entity. The IP entity is
specified with an extended state machine made up of a set of states, a set
of transitions between states, and a set of input events causing the state
transitions. The following specification is made up of a machine instantia-
tion identifier, a state diagram, a state vector, data structures, an
event list, and a correspondence between events and actions. In addition,
an extended state machine has an initial state whose values are assumed at
state machine instantiation.

 9.4.1 Machine instantiation identifier. Each datagram is an independent
unit. Therefore, one state machine instance exists for each datagram. Each
state machine is uniquely named by the four values, source address, destina-
tion address, protocol, and identification. These values are drawn from
parameters of the interaction primitives specified in sections 6.2 and 8.2.

 9.4.2 State diagram. The following diagram depicts a simplified IP state
machine.

40

9.4.3 State vector. A state vector consists of the following elements:

 - STATE NAME = (inactive, reassembling)

 - REASSEMBLY RESOURCES = control information and storage needed to
 reassemble fragments into the original datagram, including:

a. reassembly map: a representation of each 8-octet unit of
 data and its relative location within the original datagram.

b. timer: value of the reassembly-timer in unit seconds from
 0 to 255.

c. total data length: size of the data carried in datagram being
 reassembled.

d. header: storage area for the header portion of the datagram
 being reassembled.

e. data: storage area for the data portion of the datagram being
 reassembled.

A state machine’s initial state is INACTIVE with unused reassembly resources.

 9.4.4 Data structures. The IP state machine references certain data areas
corresponding to the state vector, and each interaction primitive: SEND,
DELIVER, SNP SEND and SNP DELIVER. For clarity in the events and actions
section, data structures are declared in Ada for these data areas. However,

a data structure may be partially typed or completely untyped where specific
formats or data types are implementation dependent.

 9.4.4.1 State vector. The definition of an IP state vector appears in
section 9.4.3 above. A state vector structure is declared as:

state vector: state vector type;

type state vector type is
 record
 state name: (INACTIVE, REASSEMBLING);
 reassembly_map
 timer
 total data length
 header
 data
 end record;

 9.4.4.2 From ULP. The from ULP structure holds the interface parameters
and data associated with the SEND primitive, as specified in section 6.2.l.
The from ULP structure is declared as:

from ULP: from ULP type;

type from ULP_type is
 record
 source addr
 destination addr
 protocol
 type_of_service is
 record
 precedence

 delay
 throughput
 reliability

 end record;
 identifier time to live
 dont fragment
 length
 data
 options
 end record;

 9.4.4.3 To ULP. The to ULP structure holds Interface parameters and data
associated with the DELIVER primitive, as specified to section 6.2.2. The
to ULP structure is declared as:

to ULP : to ULP type;

type to ULP type is
 record
 source addr

42

 destination addr
 protocol
 type_of_service is

 record
 precedence

delay
throughput
reliability

 end record;
length
data
options
error

 end record;

 9.4.4.4 From SNP. The from SNP structure holds the interface parameters
and datagram associated with the SNP DELIVER primitive, as specified in
section 8.3.2. The from SNP structure is declared as:

type from SNP type is
 record
 local destination addr
 dtgm: datagram type;
 error
 end record;

The dtgm element is itself a structure as specified below.

 9.4.4.5 To SNP. The to SNP structure holds the data and parameters
associated with the SNP SEND primitive specified in section 8.3.1. The
to SNP structure is declared as:

type to SNP type is
 record
 local destination addr
 type_of_service indicators
 length
 dtgm: datagram type;
 end record;

The dtgm element is itself a structure as specified below.

 9.4.4.6 Dtgm. A dtgm structure holds a datagram made up of a header
portion and a data portion as specified in section 9.3. A dtgm structure
is declared as:

type datagram type is
 record
 version: HALF OCTET;
 header_length: HALF OCTET;
 type_of service: OCTET;
 total length: TWO OCTETS;

 identification: TWO OCTETS;
 dont frag_flag: BOOLEAN;
 more frag_flag: BOOLEAN;
 fragment offset: ONE N FIVE EIGHTHS OCTETS;
 time to live: OCTET;
 protocol: OCTET;
 header checksum: TWO OCTETS;
 source addr: FOUR OCTETS;
 destination addr: FOUR OCTETS;
 options: OPTION TYPE;
 data: array(l..DATA LENGTH) of INTEGER;
 end record;

subrecord HALF OCTET is INTEGER range 0..15;
subrecord OCTET is INTEGER range 0..255;
subrecord ONE N FIVE EIGHTHS OCTETS is INTEGER range 0..8191;
subrecord TWO OCTETS is INTEGER range 0..65535;
subrecord FOUR OCTETS is INTEGER range 0..4294967296;
subrecord OPTION TYPE is zero or more of the following:

 security;
 loose source routing;
 strict source routing;
 record route;
 stream identifier;
 internet timestamp;

 9.4.5 Event list. The event list is made up of the interaction primi-
tives specified in sections 6.2 and 8.2 and the services provided by the
execution environment defined In section 10. The following list defines
the set of possible events in an IP state machine:

a. SEND from ULP -- A ULP passes interface parameters and data to
 IP for delivery across the Internet (see section 6.2.1.1).

b. SNP DELIVER from SNP -- SNP passes to IP a datagram received
 from subnetwork protocol (see section 8.2.2.1).

c. TIMEOUT -- The timing mechanism provided by the execution
 environment Indicates a previously specified time interval has
 elapsed (see section 10.3).

 9.4.6 Events and actions. This section is organized In three parts. The
first part contains a decision table representation of state machine events
and actions. The decision tables are organized by state; each table corre-
sponds to one event. The second part specifies the decision functions
appearing at the top of each column of a decision table. These functions
examine attributes of the event and the state vector to return a set of
decision results. The results become the elements of each column. The third
part specifies action procedures appearing at the right of every row. Each
row of the decision table combines the decision resultants determine appro-
priate event processing, These procedures specify event processing algorithms
in detail.

44

 9.4.6.1 Events and actions decision tables.

 9.4.6.1.1 State = inactive, event is SEND from ULP.

Comments:
A ULP passes data to IP for Internet delivery. IP validates the
Interface parameters, determines the destination, and dispatches the ULP
data to its destination.

Legend
 d = “don’t care” condition

 9.4.6.1.2 State = inactive, event is SNP DELIVER from SNP.

Comments:

The SNP has delivered a datagram from another IP. IP validates the data-
gram header, and either delivers the data from a complete datagram to its
destination within the host or begins reassembly for a datagram fragment.

Legend
 d = “don’t care” condition

 9.4.6.1.3 State = reassembling, event is SNP DELIVER from SNP.

Comments:

The SNP has delivered a datagram associated with an earlier received data-
gram fragment. IP validates the header and either continues the reassembly
process with the datagram fragment or delivers the data from the completed
datagram to its destination within the host.

Legend
 d = “don’t care” condition

 9.4.6.1.4 State = Inactive, event is TIMEOUT.

Actions: reassembly timeout; state: = INACTIVE

Comment:

The time-to-live period of the datagram being reassessed has elapsed.
The incomplete datagram is discarded; the source IP is Informed.

 9.4.6.2 Decision table functions. The following functions examine Infor-
mation contained in interface parameters, interface data, and the state
vector to make decisions. These decisions can be thought of as further
refinements of the event and/or state. The return values of the functions
represent decisions made. The decision functions appear in alphabetical
order.

 9.4.6.2.1 A frag? The a frag function examines certain fields in an

46

incoming datagram’s header to determine whether the datagram is a fragment
of a larger datagram. The data effects of this algorithm are:

a. Data examined only:

 from SNP.dtgm.fragment offset
 from SNP.dtgm.more_frag_flag

b. Return values:

 NO - the datagram has not been fragmented
 YES - the datagram is a part of a larger datagram

 if ((from SNP.dtgm.fragment offset = 0) --contains the
 beginning

 and (from SNP.dtgm.more_frag flag = 0)) --and the end
 of the data

 then return NO --therefore it Is an unfragmented datagram

 else return YES; --otherwise it contains only a portion of
 the data
 --and is a fragment.

 end if;

 9.4.6.2.2 Can frag? The can frag function examines the “don't fragment”
flag of the interface parameters allowing fragmentation. The data effects
of this function are:

a. Data examined only:

 from ULP.dont fragment

b. Return values:

 NO - “don’t fragment” flag is set, preventing fragmen-
 tation

 YES - “don’t fragment” flag is NOT set, to allow frag-
 mentation

 if (from ULP.dont fragment = TRUE)
 then return NO
 else return YES
 end if;

 9.4.6.2.3 Checksum valid? The checksum valid function examines an incoming
datagram’s header to determine whether it is free from transmission errors.
The data effects of this function are:

a. Data examined only:

from SNP.dtgm.version
from SNP.dtgm.header length
from SNP.dtgm.type_of_service
from SNP.dtgm.total length
from SNP.dtgm.identification
from SNP.dtgm.dont frag_flag
from SNP.dtgm.more frag flag
from SNP.dtgm.fragment offset
from SNP*dtgm.time to live
from SNP.dtgm.protocol
from SNP.dtgm.source addr
from SNP.dtgm.destination addr
from SNP.dtgm.options

b. Return values:

NO -- checksum did not check, indicating header fields

 contain errors
YES -- checksum was consistent

 --The checksum algorithm to the 16-bit one’s complement
 --of the one’s complement sum of all 16-bit words in
 --the IP header. For purposes of computing the checksum,
 --the checksum field is set to zero.

--implementation dependent action

 9.4.6.2.4 Icmp checksum? The icmp_checksum function computes the check-
sum of the ICMP control message carried in the data portion of the incoming
datagram. The data effects of this procedure are:

a. Data examined:

from SNP.dtgm.data

b. Return values:

NO -- checksum did not check indicating the control
 message contains errors
YES -- checksum was consistent

 --The checksum algorithm in the 16-bit one’s complement of
 --the one’s complement sum of all 16-bit words
 --in ICMP control message. For purposes of computing the
 checksum,

48

 --the checksum field (octets 2-3) is set to zero.

--implementation dependent action

 9.4.6.2.5 Need to frag? The need to frag function examines the interface
parameters and data from a ULP to determine whether the data can be transmit-
ted as a single datagram or must be transmitted as two or more datagram
fragments. The data effects of this function are:

a. Data examined only:

from ULP.length
from ULP.options

b. Return values:

NO - one datagram is small enough for the subnetwork
YES - datagram fragments are needed to carry the data

 --Compute the datagram's length based on the length of data,
 --the length of options, and the standard datagram header size.

 if ((from ULP.length + (number of bytes of option data)
 + 20) > maximum transmission unit of the local
 subnetwork)

 then return YES
 else return NO;
 end if;

 9.4.6.2.6 Reass done? The reass done function examines the incoming data-
gram and the reassembly resources to determine whether the final fragment
has arrived to complete the datagram being reassembled. The data effects of
this function are:

a. Data examined only:

state vector.reassembly_map
state vector.total data length
from SNP.dtgm.total length
from SNP.dtgm.more frag_flag
from SNP.dtgm.header length

b. Return values:

NO - more fragments are needed to complete reassembly
YES - this is the only fragment needed to complete
 reassembly

 --The total data length of the original datagram, as computed
 --from “tail” fragment, must be known before completion is
 --possible.

 if (state vector.total data length = 0)
 then

 --Check incoming datagram for “tail.”

 if (from SNP.dtgm.more_frag_flag = FALSE)
 then
 --Compute total data length and see if data in
 --this fragment fill out reassembly map.

 if (state vector.reassembly_map from 0 to
(((from SNP.dtgm.total length - -- total data
 (from SNP.dtgm.header length*4)+7)/8)-- length
+7)/8 is set)

 then return YES;
 end if;

 else
 --Reassembly cannot be complete if total data length unknown.

 return NO;
 end if;

else --Total data length is already known. See if data
 --in this fragment fill out reassembly map.

 if (all reassembly map from 0 to
 (state vector.total data length+7)/8 is set)

 then return YES; -- final fragment
 else return NO; -- more to come
 end if;
end if;

 9.4.6.2.7 SNP params valid? The SNP_params valid function examines the
interface parameters and the datagram received from the local subnetwork
protocol to see if all values are within legal ranges and no errors have
occurred. The data effects of this function are:

a. Data examined only:

from SNP.dtgm.version
from SNP.dtgm.header length
from SNP.dtgm.total length
from SNP.dtgm.protocol
other information/errors from SNP

b. Return values:

NO - some value or values are illegal or an error has
 occurred
YES - examined values are within legal ranges and no
 errors have occurred

50

if (--The current IP header version number is 4.
 (from SNP.dtgm.version /= 4)

--the minimal IP header is 5 32-bit units in length.
 or (from SNP.dtgm.header_length < 5)

--The smallest legal datagram contains only a header and is
--20 octets in length.

 or (from SNP.dtgm.total length < 20)

--The legal protocol identifiers are
--available from the DoD Executive Agent for Protocols.

 or (from SNP.dtgm.protocol is not one of the acceptable identi-
 fiers)

)

then return NO

else if (any implementation dependent values received from the
 SNP are illegal or indicate error conditions)

 then return NO
 else return YES; --Otherwise, all values look good.
 end if;
end if;

9.4.6.2.8 TTL valid? The TTL valid function examines the IP header time-
to-live field of an incoming datagram to determine whether the datagram has
exceeded its allowed lifetime. The data effects of this function are:

a. Data examined only:

from SNP.dtgm.time-to-live

b. Return values:

NO - the datagram has expired
YES - the datagram has some life left in it

 --Decrement from SNP.dtgm.time to live field by the maximum
 --of either the amount of time elapsed since the last IP module
 --handled this datagram (if known) or one second.

 if (from SNP.dtgm.time to live
 - maximum (number of seconds elapsed since last IP, 1)
 <= 0)

 then return NO
 else return YES;

 9.4.6.2.9 ULP params valid? The ULP_params valid function examines the
interface parameters received from a ULP to see if all values are within
legal ranges and desired options are supported. The data effects of this
function are:

a. Data examined only:

from ULP.time to live
from ULP.options

b. Return values:

NO - some value is illegal or a desired option is not
 supported.
YES - examined values are within legal ranges and desired
 options can be supported.

 if (
 --The time-to-live value must be greater than zero to
 --allow IP to transmit it at least once.

 (from ULP.time to live < 0)

 or --The options requested are inconsistent.

 --Implementation dependent action

 or --Other implementation dependent values are invalid.
 --implementation dependent action)

 then return NO

 else return YES;

 end if;

 9.4.6.2.10 Where dest? The where dest function determines the destina-
tion of an outgoing datagram by examining the destination address supplied
by the ULP. The data effects of this function are:

a. Data examined only:

from ULP.destination addr

b. Return values:

ULP - destination is an upper layer protocol at this
 location
REMOTE - destination to some remote location

 --Examine the destination address field of the datagram
 header.

52

 if (from SNP.dtgm.destination addr /= this site’s address)
 then return REMOTE
 also return ULP;
 end if;

 9.4.6.2.11 Where to? The where to function determines the destination
of the incoming datagram by examining the address fields and options fields
of the datagram header. The data effects of this function are:

a. Data examined only:

from SNP.dtgm.destination addr
from SNP.dtgm.protocol
from SNP.dtgm.options

b. Return values:

ULP - destination is an upper layer protocol at this
 location
ICMP - destination is this IP module because the
 datagram carries an ICMP control message
REM0TE - destination is some remote location

 --The source route influences the datagram’s gateway route.

if ((from SNP.dtgm.options contains the source routing
 option) and (all source route list addresses have
 not been visited))
then return REMOTE;
end if;

 --Examine the destination address field of the datagram
header.

if (from SNP.dtgm.destination addr /= this site’s address)
then
 --It’s destined for another site.
 return REMOTE
else
 --It’s destined for this site.
 if (from SNP.dtgm.protocol = the ICMP protocol identi-

 fier)
 then return ICMP
 else return ULP;
 end if;
end if;

 9.4.6.3 Decision table action procedures. The following action procedures
represent the set of actions an IP state Machine should perform in response to

a particular event and internal state. These procedures have been organized
and designed for clarity and are intended as guidelines. Although imple-
mentors may in fact reorganize for better performance, the data effects
of the resulting implementations must not differ from those specified below.

 9.4.6.3.1 Analyze. The analyze procedure examines datagrams containing
ICMP control messages from other IP modules. In general, error handling is
implementation dependent. However, guidelines are provided to identify
classes of errors and suggest appropriate actions. The data effects of this
procedure are:

a. Data examined:

from SNP.dtgm.protocol
from SNP.dtgm.data

b. Data modified:

implementation dependent

For simplicity, it is assumed that the data area can be accessed as a byte
array.

--Examine the first octet in the data portion to identify the
--error type and subsequent format.

begin

case from SNP.dtgm[l] of

 when 3 => --Destination Unreachable Message

--The errors in the “unreachable” class
--should be passed to the ULP indicating data delivery
--to the destination is unlikely if not impossible.
--The second octet identifies what level was unreachable.

 case from SNP.dtgm[2] of

 when 0 => --net unreachable

 when 1 => --host unreachable

 when 2 => --protocol unreachable

 when 3 => --port unreachable

 when 4 => --fragmantation needed and don’t fragment set

54

 when 5 => --source route failed

 end case;

when 11 => --Time Exceeded Message

 --The “time-out” errors are usually not passed
 --to the ULP but should be recorded for network
 --monitoring uses.

 case from SNP.dtgm of

 when 0 => --Time to live exceeded in transit

 when 1 => --Fragment reassembly time exceeded

 end case;

when 12 => --Parameter Problem Message

 --This error to generated by a gateway IP to indicate
 --a problem in the options field of a datagram header.
 --Octet 5 contains a pointer which identifies
 --the octet of the original header containing the error.

when 4 => --Source Quench Message

 --This message indicates that a datagram has been
 --discarded for congestion control. The ULP should
 --be informed so that traffic can be reduced.

when 5 => --Redirect Message

 --This message should result in a routing table update
 --by the IP module. Octets 5-8 contain the new value
 --for the routing table. It is not passed to the ULP.

when 8 => --Echo Datagram

when 0 => --Echo Reply Datagram

when 13 => --Timestamp Datagram

when 14 => --Timestamp Reply Datagram

when 15 => --Information Request Message

when 16 => --Information Reply Message

end case;

 9.4.6.3.2 Build&send. The build&send procedure builds an outbound
datagram in the to SNP structure from the interface parameters and data in
from ULP and passes it to the SNP for transmission across the subnet. The
data-effects of this procedure are:

a. Data examined:

 from ULP.source addr from ULP.time to live
 from ULP.destination addr from ULP.dont fragment
 from ULP.protocol from ULP.options
 from ULP.type_of service from ULP.length
 from ULP.identifier from ULP.data

b. Data modified:

 to SNP.dtgm to SNP.type_of service indicators
 to SNP.length to SNP.local destinatian addr

--Fill in each IP header field with information from from ULP or
--standard values.

to SNP.dtgm.version: = 4; --Current IP version is 4.
to SNP.dtgm.type_of_service.indicators: = from ULP.type_of_service;
to SNP.dtgm.identification: = from ULP.identifier; --If ID is not given

 --by ULP, the IP must
 --supply its own.

to SNP.dtgm.dont frag_flag: = from ULP.dont fragment;
to SNP.dtgm.more frag flag: = false;
to SNP.dtgm.fragment offset: = false;
to SNP.dtgm.time to live: = from ULP.time to live;
to SNP.dtgm.protocol: = from ULP.protocol;
to SNP.dtgm.source addr: = from ULP.source addr;
to SNP.dtgm.destination addr: = from ULP.destination addr;
to SNP.dtgm.options: = from ULP.options;
to SNP.dtgm.header_length: = 5 + (number of bytes of option data)/4;
to SNP.dtgm.total length: = (to SNP.dtgm.header length)*4

 + (from ULP.length);

--Call compute checksum to compute and set the checksum.

 compute checksum;

--And, fill in the data portion of the datagram.

 to SNP.dtgm.data[0..from ULP.length -1]: = from ULP.data[0..
 from ULP.length-1];

--Set the type of service and length fields for the SNP.

 to SNP.type_of_servlce indicators: = to SNP.dtgm.type_of servlce;
 to SNP.length: = to SNP.dtgm.total length;

56

 --Call the route procedure to determine a local destination
 --from the internet destination address supplied by the ULP.

route;

 --Request the execution environment to pass the contents of to SNP
 --to the local subnetwork protocol for transmission.

TRANSFER to SNP to the SNP.

 NOTE: The format of the from ULP elements is unspecified, allowing an imple-

 mentor to assign data types for the interface parameters. If those
 data types differ from the IP header types, the assignment statements
 above become type conversions.

 9.4.6.3.3 Compute checksum. The compute checksum procedure calculates
a checksum value for a datagram header so that transmission errors can be
detected by a destination IP. The data effects of this procedure are:

a. Data examined:

to SNP.dtgm.version
to SNP.dtgm.header_length
to SNP.dtgm.type of service
to SNP.dtgm.total length
to SNP.dtgm.identification
to SNP.dtgm.dont frag flag
to SNP.dtgm.more frag_flag
to SNP.dtgm.fragment offset
to SNP.dtgm.time to live
to SNP.dtgm.protocol
to SNP.dtgm.source addr
to SNP.dtgm.destination addr
to SNP.dtgm.options

b. Data modified:

 to SNP.dtgm.header checksum

 --checksum algorithm is the 16-bit one's complement of
 --the one's complement sum of all 16-bit words
 --in the IP header. For purposes of computing the checksum,
 --the checksum field is set to zero.

 --implementation dependent action

 9.4.6.3.4 Computing icmp checksum. The compute icmp checksum procedure
computes the checksum of the ICMP control message carried in the data
portion of an outgoing datagram. The data effects of this procedure are:

a. Data examined:

to SNP.dtgm.data

b. Data modified:

to SNP.dtgm.data[2-3]

 --The checksum algorithm is the 16-bit one’s complement of
 --the one’s complement sum of all 16-bit words
 --in ICMP control message. For purposes of computing the
 checksum,
 --the checksum field (octets 2-3) is set to zero.

 --implementation dependent action

 9.4.6.3.5 Error to source. The error to source procedure formats and
returns an error report to the source of an erroneous or expired datagram.
The data effects of this procedure are:

 a. Parameters:

error param : (PARAM PROBLEM, EXPIRED TTL,
 PROTOCOL UNREACH);

 b. Data examined:

from SNP.dtgm

 c. Data modified:

to SNP.dtgm to SNP.local destination addr
to SNP.length to SNP.type_of_service indicators

 --Format and transmit an error datagram to the source IP.

 to SNP.dtgm.version : = 4; --standard IP version
 to SNP.dtgm.header length : = 5; --standard header size
 to SNP.dtgm.type_of service : = 0; --routine service quality
 to SNP.dtgm.identification : = select new value;
 to SNP.dtgm.more frag_flag : = FALSE;
 to SNP.dtgm.dont frag_flag : = FALSE;
 to SNP.dtgm.fragment offset : = 0;
 to SNP.dtgm.time to live : = 60; --or value large enough to

 --allow delivery
 to SNP.dtgm.protocol : = this number will be assigned by

 DoD Executive Agent for Protocols;
 to SNP.dtgm.source addr : = from SNP.dtgm.destination addr;
 to SNP.dtgm.destination addr : = from SNP.dtgm.source addr;

58

 --The data section carries the ICMP control message.
 --The first octet identifies the message type, the remaining
 --octets carry related information.

 case error_param of

where PARAM PROBLEM =>
 to SNP.dtgm.data[0]: = 12; --ICMP type - Parameter Problem
 to SNP.dtgm.data[l]: = 0; --Code = problem with option
 to SNP.dtgm.data[4]: = position of error octet;

where EXPIRED TTL =>
 to SNP.dtgm.data[0]: = 11; --ICMP type = Time Exceeded
 to SNP.dtgm.data[1]: = 0; --Code = TTL exceed in transit

where PROTOCOL UNREACH =>
 to SNP.dtgm.data[0]: = 3; --ICMP type = Dest. Unreachable
 to SNP.dtgm.data[l]: = 2; --Code = protocol unreachable

 end case;

 --The bad datagram’s header plus the first 64 bytes of its
 --data section (a total of “N” octets) is copied in following
 --the ICMP information.

 to SNP.dtgm.data[8..N+3]: = from SNP.dtgm.data[0..N-1];
 to SNP.dtgm.total length: = from SNP.header length*4 + N + 8;
 compute icmp_checksum;

 --Compute checksum, determine the route for the error datagram,
 --the type of service indicators, and the datagram size for the SNP.

 compute checksum;
 to SNP.type_of_service indicators: = 0;
 to SNP.length := to SNP.dtgm.total length;
 route;

 --Request the execution environment to pass the contents of to SNP
 --to the local subnet protocol for transmission.

 TRANSFER to SNP to the SNP.

 9.4.6.3.6 Error to ULP. The error to ULP procedure returns an error report
to a ULP which has passed Invalid parameters or has requested a service that
cannot be provided. The data effects of this procedure are:

a. Parameters:

 error param: (PARAM PROBLEM, CAN’T FRAGMENT,
 NET UNREACH, PROTOCOL UNREACH,
 PORT UNREACH);

 b. Data examined:

implementation dependent

 c. Data modified:

to ULP.error
implementation dependent parameters

 --The format of error reports to a ULP is implementation
 --dependent. However, included in the report should be
 --a value indicating the type of error, and some information
 --to identify the associated data or datagram.

 to ULP.error := error param;
 --implementation dependent action

 9.4.6.3.7 Fragment&send. The fragment&send procedure breaks data that is
too big to be transmitted through the subnetwork as a single datagram into
smaller pieces for transmission in several datagrams. Normally, hosts do
not send datagrams too big to go through their own network. The data effects
of the procedure are:

a. Data examined only:

from ULP.source addr from ULP.length
from ULP.destination addr from ULP.data
from ULP.protocol from ULP.options
from ULP.identifier from ULP.time to live
from ULP.dont fragment

b. Data modified:

to SNP.dtgm to SNP.type_of_service indicators
to SNP.length

c. Local variables:

number of fragments -- number of small datagrams created
 from user data
data per_fragment -- the number of octets in each small
 datagram
number frag_blocks -- the number of 8-octet blocks in each
 small datagram
data in last frag -- the number of octets in the last
 datagram
j -- loop counter for each fragment generated

 --Compute the fragmentation variables

 --The amount at data per fragment equals the max datagram size
 less

60

 --the length of the datagram header.
data per fragment: = maximum subnet transmission unit

 - (20 + number of bytes of option data);

number_frag_blocks: = data_per_fragment/8;

number_of fragments: = (from ULP.length + (data_per frag-
ment-1)) / data per fragment;

data in last frag: = from ULP.length modulo data per frag-
 ment;

 --Create the first fragment and transmit it to the SNP.

to SNP.dtgm.version: = 4;
to SNP.dtgm.header length: = 5 + (number bytes of option
 data/4);
to SNP.dtgm.total length: = to SNP.dtgm.header length
 + data_per fragment;
to SNP.dtgm.identification: = from ULP.identifier;
to SNP.dtgm.dont frag_flag: = from ULP.dont fragment;
 --this will be false
to SNP.dtgm.more_frag_flag: = TRUE;
to SNP.dtgm.fragment_offset: = 0;

to SNP.dtgm.time to live: = from ULP.time to_live;
to SNP.dtgm.protocol: = from ULP.protocol;
to SNP.dtgm.source addr: = from ULP.source addr;
to SNP.dtgm.destination addr: = from ULP.destination addr;
to SNP.dtgm.options: = from ULP.options;
to SNP.dtgm.data[0..data per fragment-1]: =
 from ULP.data[0..data_per_
 fragment-1];

 --Set the datagram’s header checksum field.
 compute checksum;

 --Call route to determine the subnetwork address of the
 --destination.
 route;

 --Also set the length and type of service indicators.
 to SNP.length := to SNP.dtgm.total length;
 to SNP.type_of service indicators := to SNP.dtgm.type_

 of service;

 --Request the execution environment to pass the first fragment
 --to the SNP.

 TRANSFER to SNP to the local subnetwork protocol.

 --Format and transmit successive fragments.

for j in 1..number of fragments-1 loop

 --The header fields remain the same as in the first
 --fragment, EXCEPT for:

if (“copy” flag present in any options) --most signi-
 --ficant bit
 --of option
 --octet

then --put ONLY “copy” options into options fields and
 --adjust length fields accordingly.

 to SNP.dtgm.options: = (options with “copy” flag);
 to SNP.dtgm.header length: =5 +

 (number of copy options
 octets/4);

else --only standard datagram header present

 to SNP.dtgm.header length: = 5;

end if;

 --Append data and set fragmentation fields.
if (j /= number of fragments-1)

then --middle fragment(s)

 to SNP.dtgm.more_frag_flag: = TRUE;
 to SNP.dtgm.fragment offset: = j*number frag_blocks;
 to SNP.dtgm.total length: = to SNP.dtgm.header length

+ data_per fragment;
 to SNP.dtgm.data[0..data per fragment-1]: =

from ULP.data[j*data_per frag-
ments.. (j*data per_fragment
 + data per fragment-l)];

else --last fragment

 to SNP.dtgm.more frag_flag: = FALSE;
 to SNP.dtgm.fragment offset: = j*number_frag_blocks;
 to SNP.dtgm.total_length: = to SNP.dtgm.header length*4

 + data in last frag;
 to SNP.dtgm.data[0..data in last frag-1]:

 from ULP[j*data per fragment..
 (j*data_per fragment+ data in
 last frag-1)];

end if;

 --Call checksum to set the datagram’s header checksum field.
 checksum;

62

--Call route to determine the subnetwork address of the
--destination.
 route;

--Also set the length and type of service indicators.
 to SNP.length := to SNP.dtgm.total length;
 to SNP.type_of service indicators := to SNP.dtgm.type_of_
 service;

--Request the execution environment to pass this fragment
--to the SNP.

 TRANSFER to SNP to the local subnetwork protocol.

 end loop;

A fragmentation algorithm may vary according to implementation concerns but
every algorithm must meet the following requirements:

a. A datagram must not be fragmented if dtgm.dont frag_flag is true.

b. The amount of data in each fragment (except the last) must be broken
 on 8-octet boundaries.

c. The first fragment must contain all options carried by the original
 datagram, except padding and no-op octets.

d. The security, source routing, and stream identification options
 (i.e. marked with “copy” flag, MSB in option octet) must be carried
 by all fragments, if present in the original datagram.

e. The first fragment must have to SNP.dtgm.fragment offset set to zeros

f. All fragments, except the last, must have to SNP.dtgm.more frag_flag
 set true.

g. The last fragment must have the to SNP.dtgm.more frag_flag set false.

 9.4.6.3.8 Local delivery. The local delivery procedure moves the interface
parameters and data in the from ULP structure to the to ULP structure and
delivers it to an in-host ULP. The data effects of this procedure are:

a. Data examined:

 from ULP.destination addr from ULP.length
 from ULP.source addr from ULP.data
 from ULP.protocol from ULP.options
 from ULP.type of service

b. Data modified:

 to ULP.source addr to ULP.length
 to ULP.destination addr to ULP.data
 to ULP.protocol to ULP.options
 to ULP.type_of_service

 --Move the interface parameters and data from the input
 --structure, from ULP, directly to the output structure,
 --to ULP, for delivery to a local ULP.

from ULP.destination addr: = to ULP.destination addr;
from ULP.source addr : = to ULP.source addr';-
from ULP.protocol : = to ULP.protocol;
from ULP.type_of_service : = to ULP.type_of_service;
from ULP.length : = to ULP.length;
from ULP.data : = to ULP.data;
from ULP.options : = to ULP.options;

 --Request the execution environment to pass the contents of
 --to SNP to the local subnet protocol for transmission.

 TRANSFER to ULP to to ULP.protocol.

 9.4.6.3.9 Reassembly. The reassembly procedure reconstructs an original
datagram from datagram fragments. The data effects of this procedure are:

a. Data examined:

from SNP.dtgm

b. Data modified:

state vector.reassembly_map
state vector.timer
state vector.total data length
state vector.header
state vector.data

c. Local variables:

j -- loop counter

data in frag -- the number of octets of data in received
fragment

64

 data in frag: = (from SNP.dtgm.total length-from SNP.
 dtgm.header length*4);

 --Put data in its relative position in the data area of the
 state vector.

 state vector.data[from SNP.dtgm.fragment_offset*8..
 from SNP.dtgm.fragment offset*8+data in frag]: =

 from SNP.dtgm.data[0..data in frag-1];

 --Fill in the corresponding entries of the reassembly map
 --representing each 8-octet unit of received data.

 for j in (from SNP.dtgm.fragment offset)..
 ((from SNP.dtgm.fragment_offset + data in frag +
 7)/8) loop

 state vector.reassembly map[j]: = 1;
 end loop;

 --Compute the total datagram length from the “tail-end”
 --fragment.

 if (from SNP.dtgm.more frag_flag = FALSE)
 then state vector.total data length: =

from SNP.dtgm.fragment offset*8 +
data in frag;

 end if;

 --Record the header of the “head-end” fragment.

 if (from SNP.dtgm.fragment offset = 0)
 then state vector.header := from SNP.dtgm;
 end if;

 --Reset the reassembly timer if its current value is less
 --than the time-to-live field of the received datagram.

 state vector.timer: = maximum
 (from SNP.dtgm.time to live, state vector.timer);

A reassembly algorithm may vary according to implementation concerns, but
each one must meet these requirements:

a. Every destination IP module must have the capacity to receive a
 datagram 576 octets in length, either in one piece or in fragments
 to be reassembled.

b. The header of the fragment with from SNP.dtgm.fragment offset equal
 to zero (i.e. the “head-end” fragment) becomes the header of the
 reassembling datagram.

c. The total length of the reassembling datagram is calculated from the
 fragment with from SNP.dtgm.more_frag_flag equal to zero (i.e., the
 “tail-end” fragment).

d. A reassembly timer is associated with each datagram being reassem
 bled. The current recommendation for the initial timer setting
 is 15 seconds. Note that the choice of this parameter value is
 related to the buffer capacity available and the data rate of the
 transmission medium. That is, data rate multiplied by timer value
 equals reassembly capacity (e.g.10Kb/s X 15secs = 15OKb).

e. As each fragment arrives, the reassembly timer is reset to the maxi
 mum of state vector.reassembly resources.timer and from SNP.dtgm.time
 to live in the incoming fragment.

f. The first fragment of the datagram being reassembled must contain
 all options, except padding and no-op octets.

g. The source addr, destination addr, protocol, and identifier of the
 first fragment received must recorded. All subsequent fragments’
 source addr, destination addr, protocol, and identifier will be
 compared against those recorded. Those fragments which do not
 match will be discarded.

h. As each fragment arrives, the security and precedence fields, if
 available, must be checked. If the security level of the fragment
 does not match the security level of the datagram or if the prece-
 dence level of the fragment does not match the precedence level
 of the datagram, the datagram being assembled is discarded. Also,
 an error datagram is returned to the source IP to report the
 “mismatched security/precedence” error.

i. If the reassembly timer expires, the datagram being reassembled is
 discarded. Also, an error datagram is returned to the source IP to
 report the “time exceeded during reassembly” error.

 9.4.6.3.10 Reassembled delivery. The reassembled delivery procedure
decomposes the datagram that has been reassembled in the state vector into
interface parameters and data, then delivers them to a ULP. The data effects
of this procedure are:

 a. Data examined:

state vector.header.destination addr
state vector.header.source addr
state vector.header.protocol
state vector.header.type_of_service

66

state vector.header.header length
state vector.header.total length
state vector.header.options
state vector.data

 b. Data modified:

 to ULP.destination addr to ULP.length
 to ULP.source addr to ULP.data
 to ULP.protocol to ULP.options
 to ULP.type_of_service

to ULP.destination addr: = state vector.header.destina-
 tion addr;

to ULP.source addr : = state vector.header.source_addr;
to ULP.protocol : = state vector.header.protocol;
to ULP.type_of service : = state vector.header.type of_

 service;
to ULP.length : = state vector.header.total

 length;
 - state vector.header.header

 length*4;
to ULP.options : = state vector.header.options;
to ULP.data : = state vector.data;

 9.4.6.3.11 Reassembly timeout. The reassemble timeout procedure generates
an error datagram to the source IP informing it of the datagram's expiration
during reassembly. The data effects of the procedure are:

 a. Data examined:

state vector.header
state vector.data

 b. Data modified:

to SNP.dtgm to SNP.type_of service
indicators
to SNP.length to SNP.header length

--Format and transmit an error datagram to the source IP.

 to SNP.dtgm.version : = 4; --standard IP version
 to SNP.dtgm.header length : = 5; --standard header size
 to SNP.dtgm.type_of_service: = 0; --routine service quality

 to SNP.dtgm.identification : = new value selected
 to SNP.dtgm.more_frag_flag : = FALSE;
 to SNP.dtgm.dont frag_flag : = FALSE;

 to SNP.dtgm.fragment offset : = 0;
 to SNP.dtgm.time to live : = 60;
 to SNP:dtgm.protocol : = this number will be as-

 signed by the DoD Executive
 Agent for Protocols;

 to SNP.dtgm.source addr : = state vector.header.desti-
 nation addr;

 to SNP.dtgm.destination addr: = state vector.header.source
 addr;

 --If the fragment received is the first fragment, then the
 --data section carries the ICMP error message, the header of the
 --timed-out datagram, and its first 64 bytes of data. If frag-
 --ment zero is not available then no time exceeded need be sent
 --at all.

 to SNP.dtgm.data[0]: = 12; --ICMP type = Time Exceeded
 to SNP.dtgm.data[l]: = 1; --Code = fragment reassembly

 timeout

 --Copy in the timed-out datagram’s header plus the first
 --64 bytes of its data section (assumed to be of length “N”).

 to SNP.dtgm.data[8..N+3] := state vector[0..N-1];
 to SNP.dtgm.total length := to SNP.header length*4 + N + 8;
 compute icmp checksum;

 --Compute datagram’s header checksum, determine the route for
 --the datagram, the type of service indicators, and the
 --datagram size for the SNP.

 compute_checksum;
 to SNP.type_of_service indicators := 0;
 to SNP.length := to SNP.dtgm.total length;
 route;

 --Request the execution environment to pass the contents of
 --to SNP to the local subnet protocol for transmission.

 TRANSFER to SNP to the SNP.

 9.4.6.3.12 Remote delivery. The remote delivery procedure decomposes a
datagram arriving from a remote IP into interface parameters and data and
delivers them to the destination ULP. The data effects of this procedure
are:

 a. Data examined:

from SNP.dtgm.source addr
from SNP.dtgm.destination addr

68

from SNP.dtgm.protocol
from SNP.dtgm.type_of_service
from SNP.dtgm.total length
from SNP.dtgm.header_length
from SNP.dtgm.data
from SNP.dtgm.options

 b. Data modified:

to ULP.destination addr to ULP.length
to ULP.source_addr to ULP.date
to ULP.protocol to ULP.options
to ULP.type_of_service

 to ULP.destination addr: = from SNP.dtgm.destination addr;
 to ULP.source addr : = from SNP.dtgm.source addr;
 to ULP.protocol : = from SNP.dtgm.protocol;
 to ULP.type_of_service : = from SNP.dtgm.type_of_service;
 to ULP.length : = from SNP.dtgm.total length -

 from SNP.dtgm.header length*4;
 to ULP.data : = from SNP.dtgm.data;
 to ULP.options : = from SNP.dtgm.options;

NOTE: The format of the to ULP elements is unspecified, allowing an imple
 mentor to assign data types for the interface parameters. If those
 data types differ from the IP header types, the assignment statements
 above become type conversions.

 9.4.6.3.13 Route. The route procedure examines the destination address
and options fields of an outbound datagram in to SNP to determine a local
destination address. The data effects of this procedure are:

 a. Data examined:

 to SNP.dtgm.destination addr
 to SNP.dtgm.options

 b. Data modified:

 to SNP.local destination addr
 to SNP.dtgm.options

The procedure:

 if (to SNP.dtgm.options includes timestamp)
 then

 if (the next timestamp field in to SNP.dtgm.options.timestamp
 is available)

 then

 --The timestamp or address/timestamp pair is inserted in
 --the next field in to SNP.dtgm.options.timestamp.

 end if;
 end if;

if (the network id field of destination matches the network id
 of the local subset protocol
then
 --Translate the REST field of destination into the subnetwork
 --address of the destination on this subnet.

 --implementation dependent action
else

 if (to SNP.dtgm.options includes security)
 then

 --Find the appropriate gateway with security level equal to
 --the security level of to SNP.dtgm.options.security. If
 --none exists, send error message.

 end if;

 if (to SNP.dtgm.options includes loose source and record routing)
 then

if (the network id field of next gateway in to SNP.dtgm.option.
 loose source matches the network of the local subnet
 protocol)

then
 --The gateway address (as known in the environment into
 --which the datagram is being forwarded) replaces the
 --the network id field of next gateway in to SNP.dtgm
 --.options.loose source
end if;

 end if;

 if (to SNP.dtgm.options includes strict source and record routing)
 then

if (the network id field of next gateway in to SNP.dtgm.option.
 strict source matches the network of the local subnet
 protocol)

then
 --The gateway address (as known in the environment into
 --which the datagram is being forwarded) replaces the
 --network id field of next gateway in to SNP.dtgm
 --.options.strict source.
else
 --The datagram cannot be forwarded and error message sent.
end if;

 end if;

70

if (to SNP.dtgm.options includes record routing)
then
 if (the next record route field in to SNP.dtgm.options.record

 routing is available)
 then

 --The gateway address (as known in the environment into
 --which the datagram is being forwarded) replaces the
 --next record route field in to SNP.dtgm.options.record

 -- routing.
 end if;
 end if;

 end if;

 --Set the local destination interface parameter.

 to SNP.local destination addr := (subnetwork address found above)

10. EXECUTION ENVIRONMENT REQUIREMENTS

 10.1 Description. This section describes the facilities required of an
execution environment for proper implementation and operation of the internet
Protocol. Throughout this document, the environmental model portrays each
protocol as an independent process. Within this model, the execution environ-
ment must provide two facilities: interprocess communication and timing.

 10.2 Interprocess communication. The execution environment must provide
an interprocess communication facility to enable independent processes to
exchange variable-length units of information, called messages. For IP’s
purposes, the IPC facility is not required to preserve the order of messages.
IP uses the IPC facility to exchange interface parameters and data with
upper layer protocols across its upper interface and the subnetwork protocol
across the lower interface. Sections 6 and 8 specify these interfaces.

 10.3 Timing. The execution environment must provide a timing facility
that maintains a real-time clock with units no coarser than 1 millisecond.
A process must be able to set a timer for a specific time period and be
informed by the execution environment when the time period has elapsed.
A process must also be able to cancel a previously set timer. Two IP
mechanisms use the timing facility. The internet timestamp carries timing
data in millisecond units. The reassembly mechanism uses timers to limit
the lifetime of a datagram being reassembled. In the mechanism specification
this facility is called TIMEOUT.

Custodians: Preparing Activity:
 Army - CR DCA - DC
 Navy - OH
 Air Force - 90 (Project IPSC-0167-01)

Review Activities: Other Interest:
 Army - SC, CR, AD NSA - NS
 Navy - AS, YD, MC, ON, ND, NC, EC, SA TRI-TAC-TT
 Air Force - 1, 11, 13, 17, 99, 90

72

APPENDIX A - DATA TRANSMISSION ORDER

The order of transmission of the header and data described in this document
is resolved to the octet level, Whenever a diagram shown a group of octets,
the order of transmission of those octets is the normal order in which they
are read in English. For example, in the following diagram the octets are
transmitted in the order they ore numbered.

Whenever an octet represents a numeric quantity, the left most bit in the
diagram is the high order or most significant bit. That is, the bit labeled
0 is the most significant bit. For example, the following diagram represents
the value 170 (decimal).

Similarly, whenever a multi-octet field represents a numeric quantity, the
left most bit of the whole field is the most significant bit. When a multi-
octet quantity is transmitted the most significant octet is transmitted
first.

74

